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Abstract

Conditional density estimation generalizes
regression by modeling a full density f(y|x)
rather than only the expected value E(y|x).
This is important for many tasks, including
handling multi-modality and generating pre-
diction intervals. Though fundamental and
widely applicable, nonparametric conditional
density estimators have received relatively
little attention from statisticians and little
or none from the machine learning commu-
nity. None of that work has been applied to
greater than bivariate data, presumably due
to the computational difficulty of data-driven
bandwidth selection. We describe the double
kernel conditional density estimator and de-
rive fast dual-tree-based algorithms for band-
width selection using a maximum likelihood
criterion. These techniques give speedups of
up to 3.8 million in our experiments, and en-
able the first applications to previously in-
tractable large multivariate datasets, includ-
ing a redshift prediction problem from the
Sloan Digital Sky Survey.

1 Introduction

Conditional density estimation is the estimation of the
probability density f(y|x) of a random variable y given
a random vector x. For example, in Figure 1 each
contour line perpendicular to the x axis represents a
conditional density. This can be viewed as a gener-
alization of regression: in regression we estimate the
expectation E[y|x], while in conditional density esti-
mation we model the full distribution. Figure 1 il-
lustrates a conditional bimodality for which E[y|x] is
insufficiently descriptive. Estimating conditional den-
sities is much harder than regression, but having the
full distribution is powerful because it allows one to ex-

tract almost any quantity of interest, including the ex-
pectation, modes, prediction intervals, outlier bound-
aries, samples, expectations of non-linear functions of
y, etc. It also facilitates data visualization and ex-
ploration. Conditional density estimates are of funda-
mental and widespread utility, and are applicable to
such problems as nonparametric continuous Markov
models, nonparametric estimation of conditional dis-
tributions within Bayes nets, time series prediction,
and static regression with prediction intervals. The es-
timation problem is challenging because the data gen-
erally do not include the exact x for which f(y|x) is
desired. Nonparametric kernel techniques address this
issue by interpolating between the points we have seen
without making distributional assumptions.
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Figure 1: Dataset for which f(y|x) can be either bi-
modal or unimodal, depending on x. The bold curve
represents f(y|x = 80).

In nonparametric conditional density estimation, we
make only minimal assumptions about the smoothness
of f(y|x) without assuming any parametric form. Free-
dom from parametric assumptions is very often desir-
able when dealing with complex data, as we rarely have
knowledge of true distributional forms. While a small
amount of work on nonparametric kernel conditional
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density estimation has been done by statisticians and
econometrics researchers (Gooijer & Zerom, 2003; Fan
& Yim, 2004; Hansen, 2004; Bashtannyk & Hyndman,
2001; Hyndman et al., 1996; Rosenblatt, 1969), it ap-
pears to have received little or no attention from the
machine learning community. Note that what we mean
by nonparametric conditional density estimation is dif-
ferent from other machine learning techniques with
similar names, such as conditional probability esti-
mation (which refers to outputting class probabilities
in the classification setting, also referred to as class-
conditional probabilities) and various discrete and/or
parametric conditional density models such as those
commonly used in Bayes nets. The only machine learn-
ing work we have found that seems to look at the same
problem is (Schapire et al., 2002), but it employs a
discretization scheme rather than handling continuous
values directly.

In the present work, we use the standard kernel con-
ditional density estimator that first received serious
attention in (Fan et al., 1996) and (Hyndman et al.,
1996), though it was originally proposed in (Rosen-
blatt, 1969). Although this estimator is consistent
given mild conditions on its bandwidths, practical use
has been hampered by the lack of an efficient data-
driven bandwidth selection procedure, upon which any
kernel estimator depends critically. We propose a new
method for efficiently selecting bandwidths to maxi-
mize cross-validated likelihood. The speedup of this
method is obtained via a dual-tree-based approxima-
tion (Gray & Moore, 2000) of the likelihood function.
Speeding up likelihood evaluations is relevant for gen-
eral nonparametric inference, but the present work fo-
cuses on its application to bandwidth selection. We
present two versions of likelihood approximation, one
analogous to previous dual-tree algorithms with deter-
ministic error control, which gives speedups as high
as 667 on our datasets, and the other with a new
sampling-based probabilistic error control mechanism,
giving much larger speedups as high as 3.8 million.

With this fast inference procedure we are able to ad-
dress datasets of greater dimensionality and an order
of magnitude larger than in previous work, which was
confined to bivariate datasets of size no greater than
1000 (Fan & Yim, 2004). We present results that val-
idate the accuracy and speedup of our likelihood ap-
proximation on datasets possessing a variety of sizes
and dimensionalities. We also present results on the
quality of the resulting density estimates and their pre-
dictions on various synthetic datasets (which allow us
to compare to known distributions) and on a Sloan
Digital Sky Survey (SDSS) redshift prediction problem
of current scientific interest. Most of these datasets
were previously unaddressable by naively-computed

data-driven techniques. Our kernel estimators perform
well compared to a standard reference rule bandwidth
procedure on all datasets, and, though not designed
for regression, are competitive in terms of regression
metrics with the de facto algorithm employed by as-
tronomers on the SDSS dataset. We conclude that ker-
nel conditional density estimation is a powerful tech-
nique that is made substantially more efficient by our
fast inference procedure, with many opportunities for
application in machine learning.

2 Kernel conditional density
estimation

In unconditional kernel density estimation (KDE), we
estimate a probability distribution f(x) from a dataset
{xi} by f̂(x) = 1

n

∑
i Kh(||x − xi||), where Kh(t) =

1
hd K( t

h ), K is a kernel function, i.e. a compact, sym-
metric probability distribution such as the Gaussian or
Epanechnikov, d is the dimension of x, n is the number
of data points, and h is the bandwidth controlling the
kernel widths (see Silverman, 1986). Kernels allow us
to interpolate between the data we have seen in order
to predict the density at points we haven’t seen.

In kernel conditional density estimation (KCDE), this
interpolation must happen in both the x and y direc-
tions, which leads to a double kernel estimator:

f̂(y|x) =
∑

i Kh1(y − yi)Kh2(||x− xi||)∑
i Kh2(||x− xi||) . (1)

This form is known as the Nadaraya-Watson (NW)
conditional density estimator (Gooijer & Zerom,
2003). For a queried x, it constructs a density by
weighting each yi proportionally to the proximity of
the corresponding xi. Figure 1 illustrates a conditional
density estimate on a dataset with univariate x.

The NW estimator is consistent provided h1 → 0,
h2 → 0, and nh1h2 → ∞ as n → ∞ (Hyndman
et al., 1996). A few statisticians and econometrics
researchers have made extensions to the NW estima-
tor, most notably by the addition of local polynomial
smoothing (Fan et al., 1996; Fan & Yim, 2004; Gooi-
jer & Zerom, 2003). They have also proposed both
reference rules and data-driven bandwidth selection
procedures, but all applications appear to have been
confined to the bivariate case, as has most of the the-
oretical analysis. One likely reason for this limitation
is the difficulty of selecting good bandwidths in the
presence of large datasets and higher dimensionality.

3 Bandwidth selection

As with all kernel estimators, the performance of the
NW estimator depends critically on a suitable choice
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for the bandwidths h1 and h2. The aforementioned
consistency conditions provide little guidance in the
finite-sample setting. Bandwidth selection has always
been a dilemma: on the one hand, asymptotic argu-
ments and reference distributions lead to plug-in and
reference rules whereby bandwidths can be efficiently
calculated, but these perform poorly on finite sam-
ples and when reference distributions don’t match re-
ality; on the other hand, data-driven selection criteria
give good bandwidths but are naively intractable on
datasets of appreciable size. We propose a middle road
that captures some of the advantage of each approach
by generating efficient approximations to the naively
expensive data-driven computations.

The only data-driven bandwidth score to previously
appear in the KCDE literature is the integrated
squared error in the following form:

ISE(h1, h2) =
∫

(f(y|x)− f̂(y|x))2dyf(x)dx . (2)

As shown in (Fan & Yim, 2004), minimizing ISE
is equivalent to minimizing

∫
(f̂(y|x))2dyf(x)dx −

2
∫

f̂(y|x)f(y, x)dydx. A consistent, cross-validated
estimate of the ISE is obtained by ÎSE =
1
n

∑
i

∫
(f̂−i(y|xi))2dy− 2

n

∑
i f̂−i(yi|xi), where f̂−i de-

notes f̂ evaluated with (xi, yi) left out.

Though appealing, the first term of ÎSE expands to a
triply-nested summation, giving a base computational
cost of O(n3). While this could still be used as the
starting point for an efficient approximation, we choose
to start with another criterion that has lower base com-
plexity: likelihood cross-validation.

Likelihood cross-validation has long been known in
standard kernel density estimation (see Silverman,
1986; Gray & Moore, 2003), but has yet to be used for
KCDE. One likely reason for this is the non-robustness
to outliers that can afflict the likelihood function, par-
ticularly in the presence of heavy-tailed distributions.
Although well-known asymptotic results motivate the
use of ISE instead of likelihood, we turn to the likeli-
hood for this problem because of the significant com-
putational benefit, balanced by our empirical observa-
tion that its performance is close to that of ISE.

By analogy with (Silverman, 1986), we define the
cross-validated log likelihood for KCDE to be:

L(h1, h2) =
1
n

∑

i

log(f̂−i(yi|xi)f̂−i(xi)) , (3)

where f̂(x) is the standard kernel density estimate
over x using the bandwidth h2 from f̂(y|x). We want
to choose the bandwidth pair (h1, h2) that minimizes
−L; by so doing, we will be minimizing the Kullback-
Leibler divergence between our estimated density and

Algorithm 1 Generic dual-tree recursion
Input: nodes ri, rj ; error tolerance ε
if Can-approximate(ri, rj , ε) then

Approximate(ri, rj), return
end if
if leaf(ri) and leaf(rj) then

DualtreeBase(ri, rj), return
else

Dualtree(ri.lc, rj .lc), Dualtree(ri.lc, rj .rc)
Dualtree(ri.rc, rj .lc), Dualtree(ri.rc, rj .rc)

end if

the true density (Silverman, 1986). Furthermore, the
likelihood score is naively computable in O(n2) time,
which gives us a better starting point for deriving a
fast approximation algorithm.

3.1 Dual-tree fast approximation

Dual-tree recursion is a spatial-partitioning approach
for accelerating a variety of N-body computations
such as kernel density estimates. We present a brief
overview here and refer the reader to the original pa-
pers for greater detail (Gray & Moore, 2000; Moore
et al., 2000; Gray & Moore, 2003).

For a double summation
∑

i

∑
j g(xi, xj) over the

data, the essential idea is that we can partition the set
of pairs (xi, xj) into subsets where the value g(xi, xj) is
approximately constant and can therefore be approxi-
mated once for the whole subset rather than explicitly
computed for every pair.

Suppose the data {xi} are partitioned into sub-
sets r ∈ R. We can write

∑
i

∑
j g(xi, xj) =∑

ri∈R

∑
rj∈R g(ri, rj), where g(ri, rj) =∑

i∈ri

∑
j∈rj

g(xi, xj). If, for a given pair (ri, rj), we
can determine that g(xi, xj) lies within sufficiently
narrow bounds for all xi ∈ ri and xj ∈ rj , then we
can approximate by assuming all pairs in (ri, rj) have
some value in that range without calculating each
term explicitly. The bounds on g(xi, xj) can be used
to bound the error caused by the approximation.

In a dual-tree recursion (see Algorithm 1) we produce
partitions Ri and Rj over {xi} and {xj} by traversing
two separate kd-trees.1 Ri and Rj are initially the root
nodes of the kd-trees; note that every kd-tree node pro-
vides a tight bounding box for the points it contains.
Starting with the roots, each call to the algorithm ex-
amines a node pair (ri, rj) to determine whether their
contribution can be approximated. If so, we prune that
branch of the recursion. If not, the two nodes are each
replaced by their kd-tree children, resulting in four re-

1A kd-tree is a type of binary space partitioning tree
used to speed up various kinds of computations; see (Moore
et al., 2000) for details.
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cursive node-node comparisons, unless both nodes are
leaves, in which case further refinement is impossible
and we are forced to do the brute-force computation
for that pair.

3.2 Fast cross-validated likelihood

We now derive a dual-tree-based approximation to the
cross-validated likelihood L. First we note that, upon
expansion of the f̂−i terms, we can write

L =
1
n

∑

i

log(f̂−i(yi|xi)f̂−i(xi))

=
1
n

∑

i

log(

∑
j 6=i Kh1(yi − yj)Kh2(||xi − xj ||)∑

j 6=i Kh2(||xi − xj ||) )

+ log(
1

n− 1

∑

j 6=i

Kh2(||xi − xj ||))

=
1
n

∑

i

log(Ai)− log(n− 1) ,

where Ai =
∑

j 6=i Kh1(yi−yj)Kh2(||xi−xj ||). We will
construct our approximation to L by first constructing
a list of approximations to the Ai terms, then summing
their logs to get L. In order to see how the various ap-
proximation errors will propagate through to the total
error in L, we will make use of the following exact error
propagation bounds, which we state as a lemma.

Lemma 1 The following rules hold for the absolute
error 4f induced in a function f when operating on
estimates of its arguments xi with absolute error no
more than 4xi:

1. If f =
∑

i cixi, then 4f ≤ ∑
i ci4xi

2. If f = log(x), then 4f ≤ log(1 + 4x
|x| )

We want to guarantee that our approximation leaves
us with 4L ≤ ε for some user-specified error toler-
ance ε. Using Rule 1, we have 4L ≤ 1

n

∑
i4 log(Ai),

so our original error condition will hold if we can en-
force 1

n

∑
i4 log(Ai) ≤ ε, which we can do by en-

forcing ∀i,4 log(Ai) ≤ ε. Invoking Rule 2 and a
bit of rearrangement, this is in turn equivalent to
∀i, 4Ai

Ai
< eε − 1.2

Now consider a partitioning R of the index values
i: we can write Ai =

∑
r∈R

∑
j∈r,j 6=i v(i, j), where

v(i, j) = Kh1(yi − yj)Kh2(||xi − xj ||). Then 4Ai ≤∑
r 4

∑
j∈r,j 6=i v(i, j), and our enforcement condition

holds if
∑

r 4
∑

j∈r,j 6=i v(i,j)∑
r

∑
j∈r,j 6=i v(i,j) ≤ eε − 1, which is satis-

fied if ∀r, 4
∑

j∈r,j 6=i v(i,j)∑
j∈r,j 6=i v(i,j) ≤ eε− 1. We summarize this

2We drop the absolute value signs on Ai because, being
a sum of kernel products, it is non-negative.

intermediate result as a lemma before describing two
different ways of performing the approximation.

Lemma 2 If for each Ai the contribution∑
j∈r,j 6=i v(i, j) from each subregion r of a parti-

tioning R of the data can be approximated with
relative error no greater then eε − 1, then the total
absolute error in L computed by summing the logs of
the approximated Ai will be no greater than ε.

3.3 Approximation with deterministic
bounds

Now consider two partitionings Ri and Rj induced by
dual kd-tree traversals for the i and j indices. At any
point in the dual-tree algorithm, ri and rj each con-
tain some subset of the indices. The contribution from
rj to the Ai of each i ∈ ri is

∑
j∈rj ,j 6=i v(i, j), and we

can put bounds on the terms v(i, j) for all i ∈ ri and
j ∈ rj using the bounding boxes of ri and rj . If the
bounds on v(i, j) are tight enough that we can con-
struct an approximation satisfying Lemma 2, then we
can trigger Can-approximate for these contributions
while staying consistent with the global error bound,
otherwise we must invoke the recursive comparison of
the children of ri and rj .

What we need, then, is an approximator Ŝr for Sr =∑
j∈r,j 6=i v(i, j), and an upper bound on its relative er-

ror. We give these in the following lemma, after which
we can establish the correctness of the corresponding
dual-tree pruning rule (i.e. the Can-approximate
test in Algorithm 1).

Lemma 3 Let vmin
r and vmax

r be valid bounds for v
in the sum Sr. If we approximate Sr by Ŝr = (nr −
1)v̂r, where nr is the number of points in r and v̂r =
vmax

r +vmin
r

2 , the absolute error of the approximation is

no greater than (nr − 1) vmax
r −vmin

r

2 + vmax
r .

Proof. First note that setting v̂r to the midpoint of
vmax

r and vmin
r means that no value v in Sr can differ

from v̂r by more than vmax
r −vmin

r

2 . With Ŝr = (nr −
1)v̂r, we have 4Sr = |(nr − 1)v̂r −

∑
j∈r,j 6=i v(i, j)| ≤

max{(nr − 1) vmax
r −vmin

r

2 + vmax
r , (nr − 1) vmax

r −vmin
r

2 }.
The first term in the max handles the case where i /∈ r,
in which case Ŝr matches all but one of the terms in Sr

with a v̂r. There is no more than vmax
r −vmin

r

2 error from
each matched point, plus no more than vmax

r from the
single unmatched point. The second term in the max
handles i ∈ r, in which case all terms in Sr are matched
by terms in Ŝr. The first term in the max is at least
as large as the second, and the lemma follows.¤
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Theorem 1 A dual-tree evaluation of the Ai in L that
approximates Sr by Ŝr when (nr+1)vmax

r

(nr−1)vmin
r

≤ 2eε− 1 will
guarantee that 4L ≤ ε.

Proof. By Lemma 2, if all Sr approximations satisfy
4Sr

Sr
≤ eε − 1, then 4L ≤ ε. Since Sr ≥ (nr − 1)vmin

r ,
we have 4Sr

Sr
≤ 4Sr

(nr−1)vmin
r

, so we can enforce the con-

dition of Lemma 2 by ensuring that 4Sr

(nr−1)vmin
r

≤ eε−
1. By Lemma 3, approximating with Ŝr = (nr − 1)v̂r

gives 4Sr ≤ (nr − 1) vmax
r −vmin

r

2 + vmax
r . Substituting

this bound and rearranging shows that the Lemma 2
condition is implied by enforcing (nr+1)vmax

r

(nr−1)vmin
r

≤ 2eε−1,
which establishes the theorem.¤

3.4 Approximation with probabilistic bounds

While dual-tree evaluation with this pruning rule guar-
antees the desired error bound, in practice it operates
extremely conservatively because vmin

r and vmax
r are

extreme values that may be very far from the major-
ity of the terms being summed. To get a better idea
of the composition of the values contained in a node
pair, we employ a new sampling-based bootstrap ap-
proximation for the 4Sr

Sr
≤ eε − 1 test of Lemma 2.

The procedure is defined in Algorithm 2.

We sample from the terms of Sr for an estimate v̂
of the mean value of v over non-duplicate point pairs
in (ri, rj). We treat this as a sample statistic and
obtain a bootstrap estimate of its variance σ̂v̂. We
then form a normal-based 1 − α confidence interval
(v̂ ± zα/2σ̂v̂)3 and estimate 4Sr as nrzα/2σ̂v̂, Sr as
nrv̂, and therefore 4Sr

Sr
as zα/2σ̂v̂

v̂ . This estimate is
plugged into the condition of Lemma 2 to form a new
approximate pruning rule. In practice, this allows for
far more aggressive approximations and greatly speeds
up the algorithm while still keeping error under control
(overconservatism in the error propagation framework
gives room for the increased error of this approach).

Algorithm 2 Sample-based estimation of 4Sr

Sr

Input: nodes ri, rj ; sample size m; bootstrap size B
samples ← ∅
for k = 1 to m do

Uniformly sample sk from rj until sk /∈ ri

samples ← samples ∪sk

end for
v̂ ← average(samples)
σ̂v̂ ← bootstrapStdev(samples, B)

return
zα/2σ̂v̂

v̂

3Because v̂ is a sample mean, this is justified by the
Central Limit Theorem; the sample size m should be large
enough to make the normal approximation valid.

3.5 Optimization

Due to the noisiness of L over the bandwidth space, its
gradient provides little utility above a random search.
Thus, we select bandwidths by random sampling from
a finite range large enough to cover the space of rea-
sonable bandwidths, keeping the best ones according
to the approximate evaluation of L.

4 Experiments

We present results from three classes of experiments.
The first set is designed to test the efficiency and accu-
racy of our likelihood approximations on real datasets
of varying size and dimension. The second set is com-
posed of several synthetic datasets designed to allow
direct evaluation of the estimated conditional density
f̂(y|x) with respect to known generating distributions.
The final experiment measures performance on a chal-
lenging redshift prediction task of active scientific in-
terest from the Sloan Digital Sky Survey and compares
our performance with that of a predictor from the as-
tronomical community.

In all cases we use the asymptotically optimal
Epanechnikov kernel. We scale the data by dividing
each dimension by its standard deviation, which ef-
fectively allows h2 to provide a different bandwidth
h2σd for each dimension d of x. Bandwidths are sam-
pled from [0, hmax] with hmax no greater than 10, giv-
ing effective bandwidths from [0, hmaxσd] in each di-
mension. Prediction intervals of confidence 1 − α are
generated by taking a large sample from f̂(y|x), then
quickly searching for the narrowest set of quantiles
qlower, qlower+1−α that give the desired coverage.

4.1 Time Trials

In this set of experiments we ran bandwidth selection
on various datasets to characterize the average training
time and error of the naive, deterministic, and proba-
bilistic likelihood scores. The first dataset, containing
geyser duration and wait times (Bashtannyk & Hynd-
man, 2001), is two-dimensional, and we subsampled it
at sizes 100, 200, and 299. The second dataset is sub-
sampled from a set of three-dimensional Sloan Digital
Sky Survey positional data, which we ran at sizes 500,
1000, 2000, and 10,000. Lastly, a nine-dimensional
dataset containing a large set of neighborhood demo-
graphic census statistics was also run at sizes 500,
1000, 2000, and 10,000. Results are summarized in
Figure 2 (all results appear on the last page, following
the references).

Runtimes represent a full bandwidth selection, i.e. the
total time required to evaluate a broad range of band-
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widths during the selection process, and are averaged
across a 10-fold cross-validation. Errors are reported
as the absolute deviation of the approximated values
of L from the exact values, and are averaged across
100 randomly selected bandwidth evaluations. Be-
cause of the intractability of exact likelihood evalu-
ation, the larger datasets have no error measurements
and their speedups are based on extrapolations of
the base O(N2) runtime. Note that extremely small
bandwidths cause L to diverge, which allows us to
short-circuit its computation, but these instances were
thrown out of the averages in order to avoid downward
skewing. In the probabilistic approximation of L, we
used m = 25, B = 10, and zα/2 = 1.5; performance
was not extremely sensitive to the exact values, and
these were chosen as representative of a good tradeoff
between speedup and error.

The probabilistic approximation is one to two orders
of magnitude faster than the deterministic approxima-
tion for datasets of up to 1000 points, while also re-
maining tractable on datasets in the low tens of thou-
sands that the deterministic approximation is too slow
to compute. Speedups for the probabilistic approxima-
tion reached around 6.1 thousand on the SDSS DR4
data and 3.8 million on the census data, and uniformly
increased with sample size for each dataset. Values
of ε for each method were calibrated to give an error
of approximately 0.4 on the geyser dataset, then held
at these values for all other datasets. The measured
error shows two interesting trends: 1) it appears to
slowly increase with the size of a given dataset, and
2) it appears to drop markedly, indicating increased
overconservatism, as dimension increases. This di-
mension effect is acute in the deterministic case and
less dramatic but still significant in the probabilistic
case. This makes sense, as it becomes harder to af-
fect min/max distances by splitting bounding boxes in
higher dimensions, while a sample-based method more
directly accesses the actual composition of the data.
Having established that the probabilistic approxima-
tion is much faster, while still maintaining good error
performance, we use the probabilistic approach exclu-
sively in the remaining experiments.

4.2 Synthetic datasets

We now evaluate the performance of KCDE when
using the probabilistic likelihood approximation for
bandwidth selection. We evaluate with respect to
three synthetic densities for which we know the un-
derlying f(y|x). As a measure of the density qual-
ity, we compute the mean (f̂(yi|xi) − f(yi|xi))2 over
all points (xi, yi) in the held-out sets of a 10-fold
cross-validation. This is a consistent estimate of∫

(f̂(y|x) − f(y|x))2f(y, x)dydx; we refer to it as ISE

in the results, and its value goes to zero as f̂(y|x)
approaches f(y|x). Although KCDE is not designed
specifically for regression, we also measure the mean
squared error (MSE) of predicting yi by the expec-
tation of f̂(y|xi). Prediction intervals are generated,
with quality measured by 1) the fraction of held-out
points that fall within the intervals (Interval Cover-
age), and 2) the average half-widths of the intervals
as a fraction of the true yi (Interval Width). As a
baseline, we compare the metrics from our bandwidth
selection method to those of a standard reference rule
found in (Silverman, 1986). This reference rule is for
standard kernel density estimation, and we use it on
the x and y kernels separately as though they were
unconditional estimators.

Table 1 summarizes these metrics on the three syn-
thetic datasets. The first dataset, bimodal sine, is a
typical regression setting where y is drawn from Gaus-
sian noise around a deterministic function of x, in this
case the sine function. We introduce bimodality by
flipping the sign of the sine with 20% probability. The
second dataset is drawn from a uniform distribution
in five dimensions, with the width of the distribution
in dimension d equal to 2d. This moves us up in di-
mension while providing a very different setting from
the bimodal sine because of the need for wide kernels.
Lastly, the decay series is a time series in which the
value at a given timestep is sampled from a unit Gaus-
sian centered on one of the seven previous timesteps
with exponentially decaying probability. This can be
thought of as a random walk with a bit of momen-
tum, and is designed to demonstrate the applicability
to time series and to give a higher-dimensional test,
with the vectors x composed of the seven previous ob-
servations at each timestep y.

As the table data indicate, our data-driven method
clearly dominates the reference rule in terms of ISE
and MSE. The prediction intervals were generated at
95%, and the likelihood-based density manages cover-
age more consistently near that mark. The likelihood
metrics are much less variable than those of the ref-
erence rule: in the few instances where the reference
rule obtains a better metric value, the likelihood is
close behind, but when likelihood achieves the better
mark the reference rule is often drastically worse.

These synthetic results validate likelihood-based band-
width selection relative to a sane baseline, justifying
the use of this approach on real datasets.

4.3 SDSS redshift

One task in the Sloan Digital Sky Survey is to deter-
mine the redshifts of observed astronomical objects,
from which their distances can be computed in order
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to map out cosmic geometry. Redshifts can be deter-
mined accurately from expensive spectroscopic mea-
surements, or they can be estimated from cheaper op-
tical measurements that roughly approximate the com-
plete spectra. This sounds like a regression task, but
often what appear to be single objects are in fact com-
binations of sources at different distances. Thus, a
given set of optical measurements can yield a multi-
modal distribution over redshifts, which is well mod-
eled by conditional density estimation. Multi-modality
and wide prediction intervals could be used as triggers
for engaging the finer measurements.

We present results from applying likelihood-based
KCDE to samples of 10,000 and 20,000 objects from
the SDSS. Each data point consists of four spectral
features plus the true redshift/distance measurement.
Metrics are the same as for the synthetic data, aside
from the ISE which we can no longer compute with
respect to a known underlying distribution. We again
compare to the reference rule baseline, with results
summarized in Table 2. Prediction interval coverage
is much better with the likelihood criterion. MSE
is about 8% better with the likelihood criterion at
n = 10K, and 2% worse at n = 20K. These MSE
values are only about 30% higher than the .743 posted
by the astronomers’ custom regression function. This
is good, given that our estimator is not optimizing
for regression accuracy and makes no parametric or
domain-knowledge assumptions about the problem.

In sum, these empirical results collectively validate the
speedup and error control of our fast likelihood ap-
proximations, while demonstrating the effectiveness of
likelihood-based bandwidth selection, which appears
to work well across different kinds of data. The prob-
abilistic likelihood approximation is orders of magni-
tude faster than the deterministic approximation while
still keeping error under control. Likelihood-based
bandwidth selection outperformed a baseline reference
rule, and the conditional density estimates demon-
strated their versatility by performing well under a
variety of metrics.

5 Summary and future work

We have described kernel conditional density estima-
tion, a data modeling approach with various uses
from visualization to prediction. We defined a like-
lihood cross-validation bandwidth score and showed
how to approximate it efficiently using both determin-
istic and probabilistic error control. Speedups ranged
from 50 to 3.8M with the probabilistic approximation,
and from 1.25 to 667 with the deterministic, always
increasing, for a given dataset, with the number of
points. These fast likelihood computations have the

potential to be used in other areas such as nonparamet-
ric Bayesian inference. We demonstrated good per-
formance of likelihood-based KCDE on a variety of
datasets, including some that were larger by an order
of magnitude than any previous applications of this
type of estimator.

By no means have we exhausted the potential for
speeding up bandwidth selection. Nor have we come
near to determining all the machine learning appli-
cations of the kernel conditional estimator, but we
believe it is a fundamental technique that will have
widespread applicability, as described in the introduc-
tion. We intend to explore such applications, along
with increased efficiency gains, much larger problems,
and speedup of the more robust ISE criterion.
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Figure 2: Average runtime and absolute error vs. dataset size for each computation method on the 2-dimensional geyser

data, 3-dimensional SDSS DR4 data, and 9-dimensional census demographic data. Speedups are annotated above each

point on the runtime graphs, which are log-log scaled. Speedups for n > 500 are relative to a quadratic extrapolation of

the naive runtime.

Table 1: Performance of fast likelihood and reference rule selection criteria on synthetic datasets. The better of each pair

of metrics is in bold face, except when interval widths are not comparable due to disparity in the coverage rates.

(fast likelihood/reference rule)
Dataset/size ISE MSE Expectation Interval Coverage Interval Width

bimodal sine/10K .352/.720 3.02/3.27 .972/.958 4.84/3.69
uniform/15K .208/.755 51.0/56.2 .996/.421 7.12/2.25
decay series/2K 1.39/1.89 1.63/62.6 .992/.991 5.12/12.1

Table 2: Performance of fast likelihood and reference rule selection criteria on the SDSS redshift dataset. The better of

each pair of metrics is in bold, except when interval widths are not comparable due to disparity in the coverage rates.

(fast likelihood/reference rule)
Dataset/size MSE Expectation Interval Coverage Interval Width

SDSS redshift/10K .975/1.05 .969/.800 .974/.400
SDSS redshift/20K .980/.959 .980/.816 1.09/.408
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