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Abstract

We develop BatchBALD, a tractable approximation to the mutual information
between a batch of points and model parameters, which we use as an acquisition
function to select multiple informative points jointly for the task of deep Bayesian
active learning. BatchBALD is a greedy linear-time 1 − 1/e-approximate algorithm
amenable to dynamic programming and efficient caching. We compare BatchBALD
to the commonly used approach for batch data acquisition and find that the current
approach acquires similar and redundant points, sometimes performing worse
than randomly acquiring data. We finish by showing that, using BatchBALD to
consider dependencies within an acquisition batch, we achieve new state of the
art performance on standard benchmarks, providing substantial data efficiency
improvements in batch acquisition.

1 Introduction

A key problem in deep learning is data efficiency. While excellent performance can be obtained
with modern tools, these are often data-hungry, rendering the deployment of deep learning in the
real-world challenging for many tasks. Active learning (AL) [7] is a powerful technique for attaining
data efficiency. Instead of a-priori collecting and labelling a large dataset, which often comes at a
significant expense, in AL we iteratively acquire labels from an expert only for the most informative
data points from a pool of available unlabelled data. After each acquisition step, the newly labelled
points are added to the training set, and the model is retrained. This process is repeated until a suitable
level of accuracy is achieved. The goal of AL is to minimise the amount of data that needs to be
labelled. AL has already made real-world impact in manufacturing [33], robotics [5], recommender
systems [1], medical imaging [17], and NLP [30], motivating the need for pushing AL even further.

In AL, the informativeness of new points is assessed by an acquisition function. There are a number
of intuitive choices, such as model uncertainty and mutual information, and, in this paper, we focus
on BALD [18], which has proven itself in the context of deep learning [12, 29, 19]. BALD is based
on mutual information and scores points based on how well their label would inform us about the true
model parameter distribution. In deep learning models [15, 31], we generally treat the parameters
as point estimates instead of distributions. However, Bayesian neural networks have become a
powerful alternative to traditional neural networks and do provide a distribution over their parameters.
Improvements in approximate inference [4, 11] have enabled their usage for high dimensional data
such as images and in conjunction with BALD for Bayesian AL of images [12].

In practical AL applications, instead of single data points, batches of data points are acquired
during each acquisition step to reduce the number of times the model is retrained and expert-time is
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BatchBALD

BALD

Figure 1: Idealised acquisitions of BALD and
BatchBALD. If a dataset were to contain many
(near) replicas for each data point, then BALD
would select all replicas of a single informative
data point at the expense of other informative data
points, wasting data efficiency.

Figure 2: Performance on Repeated MNIST with
acquisition size 10. See section 4.1 for further
details. BatchBALD outperforms BALD while
BALD performs worse than random acquisition
due to the replications in the dataset.

requested. Model retraining becomes a computational bottleneck for larger models while expert time
is expensive: consider, for example, the effort that goes into commissioning a medical specialist to
label a single MRI scan, then waiting until the model is retrained, and then commissioning a new
medical specialist to label the next MRI scan, and the extra amount of time this takes.

In Gal et al. [12], batch acquisition, i.e. the acquisition of multiple points, takes the top b points
with the highest BALD acquisition score. This naive approach leads to acquiring points that are
individually very informative, but not necessarily so jointly. See figure 1 for such a batch acquisition
of BALD in which it performs poorly whereas scoring points jointly ("BatchBALD") can find batches
of informative data points. Figure 2 shows how a dataset consisting of repeated MNIST digits (with
added Gaussian noise) leads BALD to perform worse than random acquisition while BatchBALD
sustains good performance.

Naively finding the best batch to acquire requires enumerating all possible subsets within the available
data, which is intractable as the number of potential subsets grows exponentially with the acquisition
size b and the size of available points to choose from. Instead, we develop a greedy algorithm that
selects a batch in linear time, and show that it is at worst a 1− 1/e approximation to the optimal choice
for our acquisition function. We provide an open-source implementation2.

The main contributions of this work are:

1. BatchBALD, a data-efficient active learning method that acquires sets of high-dimensional
image data, leading to improved data efficiency and reduced total run time, section 3.1;

2. a greedy algorithm to select a batch of points efficiently, section 3.2; and

3. an estimator for the acquisition function that scales to larger acquisition sizes and to datasets
with many classes, section 3.3.

2 Background

2.1 Problem Setting

The Bayesian active learning setup consists of an unlabelled datasetDpool, the current training set
Dtrain, a Bayesian modelM with model parameters ωωω ∼ p(ωωω | Dtrain), and output predictions p(y |
x,ωωω,Dtrain) for data point x and prediction y ∈ {1, ..., c} in the classification case. The conditioning of
ωωω onDtrain expresses that the model has been trained withDtrain. Furthermore, an oracle can provide
us with the correct label ỹ for a data point in the unlabelled pool x ∈ Dpool. The goal is to obtain a
certain level of prediction accuracy with the least amount of oracle queries. At each acquisition step,

2https://github.com/BlackHC/BatchBALD
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a batch of data points
{
x∗1, ..., x

∗
b

}
is selected using an acquisition function a which scores a candidate

batch of unlabelled data points {x1, ..., xb} ⊆ Dpool using the current model parameters p(ωωω | Dtrain):{
x∗1, ..., x

∗
b

}
= arg max
{x1,...,xb}⊆Dpool

a
(
{x1, ..., xb} , p(ωωω | Dtrain)

)
. (1)

2.2 BALD

BALD (Bayesian Active Learning by Disagreement) [18] uses an acquisition function that estimates
the mutual information between the model predictions and the model parameters. Intuitively, it
captures how strongly the model predictions for a given data point and the model parameters are
coupled, implying that finding out about the true label of data points with high mutual information
would also inform us about the true model parameters. Originally introduced outside the context of
deep learning, the only requirement on the model is that it is Bayesian. BALD is defined as:

I(y ; ωωω | x,Dtrain) = H(y | x,Dtrain) −Ep(ωωω|Dtrain)
[
H(y | x,ωωω,Dtrain)

]
. (2)

Looking at the two terms in equation (2), for the mutual information to be high, the left term has to
be high and the right term low. The left term is the entropy of the model prediction, which is high
when the model’s prediction is uncertain. The right term is an expectation of the entropy of the model
prediction over the posterior of the model parameters and is low when the model is overall certain
for each draw of model parameters from the posterior. Both can only happen when the model has
many possible ways to explain the data, which means that the posterior draws are disagreeing among
themselves.

BALD was originally intended for acquiring individual data points and immediately retraining the
model. This becomes a bottleneck in deep learning, where retraining takes a substantial amount of
time. Applications of BALD [11, 19] usually acquire the top b. This can be expressed as summing
over individual scores:

aBALD
(
{x1, ..., xb} , p(ωωω | Dtrain)

)
=

b∑
i=1

I(yi ; ωωω | xi,Dtrain), (3)

and finding the optimal batch for this acquisition function using a greedy algorithm, which reduces to
picking the top b highest-scoring data points.

2.3 Bayesian Neural Networks (BNN)

In this paper we focus on BNNs as our Bayesian model because they scale well to high dimensional
inputs, such as images. Compared to regular neural networks, BNNs maintain a distribution over
their weights instead of point estimates. Performing exact inference in BNNs is intractable for any
reasonably sized model, so we resort to using a variational approximation. Similar to Gal et al. [12],
we use MC dropout [11], which is easy to implement, scales well to large models and datasets, and is
straightforward to optimise.

3 Methods

3.1 BatchBALD

We propose BatchBALD as an extension of BALD whereby we jointly score points by estimating the
mutual information between a joint of multiple data points and the model parameters:3

aBatchBALD
(
{x1, ..., xb} , p(ωωω | Dtrain)

)
= I(y1, ..., yb ; ωωω | x1, ..., xb,Dtrain). (4)

This builds on the insight that independent selection of a batch of data points leads to data inefficiency
as correlations between data points in an acquisition batch are not taken into account.

To understand how to compute the mutual information between a set of points and the model
parameters, we express x1, ..., xb, and y1, ..., yb through joint random variables x1:b and y1:b in a
product probability space and use the definition of the mutual information for two random variables:

I(y1:b ; ωωω | x1:b,Dtrain) = H(y1:b | x1:b,Dtrain) −Ep(ωωω|Dtrain) H(y1:b | x1:b,ωωω,Dtrain). (5)
3 We use the notation I(x, y ; z | c) to denote the mutual information between the joint of the random variables

x, y and the random variable z conditioned on c.
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∑
i

I(yi ; ωωω | xi,Dtrain) =
∑

i

µ*(yi ∩ωωω)

(a) BALD

I(y1, ..., yb ; ωωω | x1, ..., xb,Dtrain) = µ*

⋃
i

yi ∩ωωω


(b) BatchBALD

Figure 3: Intuition behind BALD and BatchBALD using I-diagrams [35]. BALD overestimates the
joint mutual information. BatchBALD, however, takes the overlap between variables into account and
will strive to acquire a better cover ofωωω. Areas contributing to the respective score are shown in grey,
and areas that are double-counted in dark grey.

Algorithm 1: Greedy BatchBALD 1 − 1/e-approximate algorithm
Input: acquisition size b, unlabelled datasetDpool, model parameters p(ωωω | Dtrain)

1 A0 ← ∅

2 for n← 1 to b do
3 foreach x ∈ Dpool \ An−1 do sx ← aBatchBALD

(
An−1 ∪ {x} , p(ωωω | Dtrain)

)
4 xn ← arg max

x∈Dpool\An−1

sx

5 An ← An−1 ∪ {xn}

6 end
Output: acquisition batch An = {x1, ..., xb}

Intuitively, the mutual information between two random variables can be seen as the intersection
of their information content. In fact, Yeung [35] shows that a signed measure µ∗ can be defined for
discrete random variables x, y, such that I(x ; y) = µ*(x ∩ y), H(x, y) = µ*(x ∪ y), Ep(y) H(x | y) =

µ*(x \ y), and so on, where we identify random variables with their counterparts in information space,
and conveniently drop conditioning onDtrain and xi.

Using this, BALD can be viewed as the sum of individual intersections
∑

i µ
*(yi ∩ωωω), which double

counts overlaps between the yi. Naively extending BALD to the mutual information between y1, ..., yb
and ωωω, which is equivalent to µ*(⋂

i yi ∩ωωω
)
, would lead to selecting similar data points instead of

diverse ones under maximisation.

BatchBALD, on the other hand, takes overlaps into account by computing µ*(⋃
i yi ∩ωωω

)
and is more

likely to acquire a more diverse cover under maximisation:

I(y1, ..., yb ; ωωω | x1, ..., xb,Dtrain) = H(y1:b | x1:b,Dtrain) −Ep(ωωω|Dtrain) H(y1:b | x1:b,ωωω,Dtrain) (6)

= µ*

⋃
i

yi

 − µ*

⋃
i

yi \ωωω

 = µ*

⋃
i

yi ∩ωωω

 (7)

This is depicted in figure 3 and also motivates that aBatchBALD ≤ aBALD, which we prove in appendix
B.1. For acquisition size 1, BatchBALD and BALD are equivalent.

3.2 Greedy approximation algorithm for BatchBALD

To avoid the combinatorial explosion that arises from jointly scoring subsets of points, we introduce a
greedy approximation for computing BatchBALD, depicted in algorithm 1. In appendix A, we prove
that aBatchBALD is submodular, which means the greedy algorithm is 1 − 1/e-approximate [24, 23].
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In appendix B.2, we show that, under idealised conditions, when using BatchBALD and a fixed final
|Dtrain|, the active learning loop itself can be seen as a greedy 1 − 1/e-approximation algorithm, and
that an active learning loop with BatchBALD and acquisition size larger than 1 is bounded by an an
active learning loop with individual acquisitions, that is BALD/BatchBALD with acquisition size 1,
which is the ideal case.

3.3 Computing aBatchBALD

For brevity, we leave out conditioning on x1, ..., xn, andDtrain, and p(ωωω) denotes p(ωωω | Dtrain) in this
section. aBatchBALD is then written as:

aBatchBALD
(
{x1, ..., xn} , p(ωωω)

)
= H(y1, ..., yn) −Ep(ωωω)

[
H(y1, ..., yn |ωωω)

]
. (8)

Because the yi are independent when conditioned on ωωω, computing the right term of equation (8)
is simplified as the conditional joint entropy decomposes into a sum. We can approximate the
expectation using a Monte-Carlo estimator with k samples from our model parameter distribution
ω̂ωω j ∼ p(ωωω):

Ep(ωωω)
[
H(y1, ..., yn |ωωω)

]
=

n∑
i=1

Ep(ωωω)
[
H(yi |ωωω)

]
≈

1
k

n∑
i=1

k∑
j=1

H(yi | ω̂ωω j). (9)

Computing the left term of equation (8) is difficult because the unconditioned joint probability does
not factorise. Applying the equality p(y) = Ep(ωωω)

[
p(y |ωωω)

]
, and, using sampled ω̂ωω j, we compute the

entropy by summing over all possible configurations ŷ1:n of y1:n:

H(y1, ..., yn) = Ep(y1,...,yn)
[
− log p(y1, ..., yn)

]
(10)

= Ep(ωωω) Ep(y1,...,yn |ωωω)

[
− logEp(ωωω)

[
p(y1, ..., yn |ωωω)

]]
(11)

≈ −
∑
ŷ1:n

1
k

k∑
j=1

p(ŷ1:n | ω̂ωω j)

 log

1
k

k∑
j=1

p(ŷ1:n | ω̂ωω j)

 . (12)

3.4 Efficient implementation

In each iteration of the algorithm, x1, ..., xn−1 stay fixed while xn varies over Dpool \ An−1. We can
reduce the required computations by factorizing p(y1:n | ωωω) into p(y1:n−1 | ωωω) p(yn | ωωω). We store
p(ŷ1:n−1 | ω̂ωω j) in a matrix P̂1:n−1 of shape cn−1 × k and p(yn | ω̂ωω j) in a matrix P̂n of shape c × k. The
sum

∑k
j=1 p(ŷ1:n | ω̂ωω j) in (12) can be then be turned into a matrix product:

1
k

k∑
j=1

p(ŷ1:n | ω̂ωω j) =
1
k

k∑
j=1

p(ŷ1:n−1 | ω̂ωω j) p(ŷn | ω̂ωω j) =

(
1
k

P̂1:n−1P̂T
n

)
ŷ1:n−1,ŷn

. (13)

This can be further sped up by using batch matrix multiplication to compute the joint entropy for
different xn. P̂1:n−1 only has to be computed once, and we can recursively compute P̂1:n using P̂1:n−1
and P̂n, which allows us to sample p(y | ω̂ωω j) for each x ∈ Dpool only once at the beginning of the
algorithm.

For larger acquisition sizes, we use m MC samples of y1:n−1 as enumerating all possible configurations
becomes infeasible. See appendix C for details.

Monte-Carlo sampling bounds the time complexity of the full BatchBALD algorithm to O(bc ·
min{cb,m} · |Dpool| · k) compared to O(cb · |Dpool|

b · k) for naively finding the exact optimal batch and
O((b + k) · |Dpool|) for BALD4.

4 Experiments

In our experiments, we start by showing how a naive application of the BALD algorithm to an image
dataset can lead to poor results in a dataset with many (near) duplicate data points, and show that
BatchBALD solves this problem in a grounded way while obtaining favourable results (figure 2).

4 b is the acquisition size, c is the number of classes, k is the number of MC dropout samples, and m is the
number of sampled configurations of y1:n−1.
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(a) BALD (b) BatchBALD

Figure 4: Performance on MNIST for increasing acquisition sizes. BALD’s performance drops
drastically as the acquisition size increases. BatchBALD maintains strong performance even with
increasing acquisition size.

We then illustrate BatchBALD’s effectiveness on standard AL datasets: MNIST and EMNIST.
EMNIST [6] is an extension of MNIST that also includes letters, for a total of 47 classes, and has a
twice as large training set. See appendix F for examples of the dataset. We show that BatchBALD
provides a substantial performance improvement in these scenarios, too, and has more diverse
acquisitions. Finally, we look at BatchBALD in the setting of transfer learning, where we finetune a
large pretrained model on a more difficult dataset called CINIC-10 [8], which is a combination of
CIFAR-10 and downscaled ImageNet.

In our experiments, we repeatedly go through active learning loops. One active learning loop consists
of training the model on the available labelled data and subsequently acquiring new data points using
a chosen acquisition function. As the labelled dataset is small in the beginning, it is important to
avoid overfitting. We do this by using early stopping after 3 epochs of declining accuracy on the
validation set. We pick the model with the highest validation accuracy. Throughout our experiments,
we use the Adam [21] optimiser with learning rate 0.001 and betas 0.9/0.999. All our results report
the median of 6 trials, with lower and upper quartiles. We use these quartiles to draw the filled error
bars on our figures.

We reinitialize the model after each acquisition, similar to Gal et al. [12]. We found this helps
the model improve even when very small batches are acquired. It also decorrelates subsequent
acquisitions as final model performance is dependent on a particular initialization [9].

When computing p(y | x,ωωω,Dtrain), it is important to keep the dropout masks in MC dropout consistent
while sampling from the model. This is necessary to capture dependencies between the inputs for
BatchBALD, and it makes the scores for different points more comparable by removing this source
of noise. We do not keep the masks fixed when computing BALD scores because its performance
usually benefits from the added noise. We also do not need to keep these masks fixed for training and
evaluating the model.

In all our experiments, we either compute joint entropies exactly by enumerating all configurations,
or we estimate them using 10,000 MC samples, picking whichever method is faster. In practice, we
compute joint entropies exactly for roughly the first 4 data points in an acquisition batch and use MC
sampling thereafter.

4.1 Repeated MNIST

As demonstrated in the introduction, naively applying BALD to a dataset that contains many (near)
replicated data points leads to poor performance. We show how this manifests in practice by taking
the MNIST dataset and replicating each data point in the training set two times (obtaining a training
set that is three times larger than the original). After normalising the dataset, we add isotropic
Gaussian noise with a standard deviation of 0.1 to simulate slight differences between the duplicated
data points in the training set. All results are obtained using an acquisition size of 10 and 10 MC
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Figure 5: Performance on MNIST. BatchBALD
outperforms BALD with acquisition size 10 and
performs close to the optimum of acquisition size
1.

Figure 6: Relative total time on MNIST. Normal-
ized to training BatchBALD with acquisition size
10 to 95% accuracy. The stars mark when 95%
accuracy is reached for each method.

Table 1: Number of required data points on MNIST until 90% and 95% accuracy are reached. 25%-,
50%- and 75%-quartiles for the number of required data points when available.

90% accuracy 95% accuracy
BatchBALD 70 / 90 / 110 190 / 200 / 230
BALD 6 120 / 120 / 170 250 / 250 / >300
BALD [12] 145 335

dropout samples. The initial dataset was constructed by taking a balanced set of 20 data points5, two
of each class (similar to [12]).

Our model consists of two blocks of [convolution, dropout, max-pooling, relu], with 32 and 64 5x5
convolution filters. These blocks are followed by a two-layer MLP that includes dropout between the
layers and has 128 and 10 hidden units. The dropout probability is 0.5 in all three locations. This
architecture achieves 99% accuracy with 10 MC dropout samples during test time on the full MNIST
dataset.

The results can be seen in figure 2. In this illustrative scenario, BALD performs poorly, and even
randomly acquiring points performs better. However, BatchBALD is able to cope with the replication
perfectly. In appendix D, we look at varying the repetition number and show that as we increase
the number of repetitions BALD gradually performs worse. In appendix E, we also compare with
Variation Ratios [10], and Mean STD [20] which perform on par with random acquisition.

4.2 MNIST

For the second experiment, we follow the setup of Gal et al. [12] and perform AL on the MNIST
dataset using 100 MC dropout samples. We use the same model architecture and initial dataset as
described in section 4.1. Due to differences in model architecture, hyper parameters and model
retraining, we significantly outperform the original results in Gal et al. [12] as shown in table 1.

We first look at BALD for increasing acquisition size in figure 4a. As we increase the acquisition size
from the ideal of acquiring points individually and fully retraining after each points (acquisition size
1) to 40, there is a substantial performance drop.

BatchBALD, in figure 4b, is able to maintain performance when doubling the acquisition size from 5
to 10. Performance drops only slightly at 40, possibly due to estimator noise.

The results for acquisition size 10 for both BALD and BatchBALD are compared in figure 5.
BatchBALD outperforms BALD. Indeed, BatchBALD with acquisition size 10 performs close to the
ideal with acquisition size 1. The total run time of training these three models until 95% accuracy is

5These initial data points were chosen by running BALD 6 times with the initial dataset picked randomly and
choosing the set of the median model. They were subsequently held fixed.

6reimplementation using reported experimental setup
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Figure 7: Performance on EMNIST. BatchBALD
consistently outperforms both random acquisition
and BALD while BALD is unable to beat random
acquisition.

Figure 8: Entropy of acquired class labels over ac-
quisition steps on EMNIST. BatchBALD steadily
acquires a more diverse set of data points.

visualized in figure 6, where we see that BatchBALD with acquisition size 10 is much faster than
BALD with acquisition size 1, and only marginally slower than BALD with acquisition size 10.

4.3 EMNIST

In this experiment, we show that BatchBALD also provides a significant improvement when we
consider the more difficult EMNIST dataset [6] in the Balanced setup, which consists of 47 classes,
comprising letters and digits. The training set consists of 112,800 28x28 images balanced by class, of
which the last 18,800 images constitute the validation set. We do not use an initial dataset and instead
perform the initial acquisition step with the randomly initialized model. We use 10 MC dropout
samples.

We use a similar model architecture as before, but with added capacity. Three blocks of [convolution,
dropout, max-pooling, relu], with 32, 64 and 128 3x3 convolution filters, and 2x2 max pooling. These
blocks are followed by a two-layer MLP with 512 and 47 hidden units, with again a dropout layer in
between. We use dropout probability 0.5 throughout the model.

The results for acquisition size 5 can be seen in figure 7. BatchBALD outperforms both random
acquisition and BALD while BALD is unable to beat random acquisition. Figure 8 gives some insight
into why BatchBALD performs better than BALD. The entropy of the categorical distribution of
acquired class labels is consistently higher, meaning that BatchBALD acquires a more diverse set
of data points. In figure 15, the classes on the x-axis are sorted by number of data points that were
acquired of that class. We see that BALD undersamples classes while BatchBALD is more consistent.

4.4 CINIC-10

Figure 9: Performance on CINIC-10. Batch-
BALD outperforms BALD from 500 acquired
samples onwards.

CINIC-10 is an interesting dataset because it is large
(270k data points) and its data comes from two differ-
ent sources: CIFAR-10 and ImageNet. To get strong
performance on the test set it is important to obtain
data from both sets. Instead of training a very deep
model from scratch on a small dataset, we opt to run
this experiment in a transfer learning setting, where
we use a pretrained model and acquire data only to
finetune the original model. This is common prac-
tice and suitable in cases where data is abound for
an auxiliary domain, but is expensive to label for the
domain of interest.

For the CINIC-10 experiment, we use 160k training
samples for the unlabelled pool, 20k validation sam-
ples, and the other 90k as test samples. We use an

8



ImageNet pretrained VGG-16, provided by PyTorch [25], with a dropout layer before a 512 hidden
unit (instead of 4096) fully connected layer. We use 50 MC dropout samples, acquisition size 10 and
repeat the experiment for 6 trials. The results are in figure 9, with the 59% mark reached at 1170 for
BatchBALD and 1330 for BALD (median).

5 Related work

AL is closely related to Bayesian Optimisation (BO), which is concerned with finding the global
optimum of a function [32], with the fewest number of function evaluations. This is generally done
using a Gaussian Process. A common problem in BO is the lack of parallelism, with usually a single
worker being responsible for function evaluations. In real-world settings, there are usually many
such workers available and making optimal use of them is an open problem [13, 2] with some work
exploring mutual information for optimising a multi-objective problem [16].

Maintaining diversity when acquiring a batch of data has also been attempted using constrained
optimisation [14] and in Gaussian Mixture Models [3]. In AL of molecular data, the lack of diversity
in batches of data points acquired using the BALD objective has been noted by Janz et al. [19], who
propose to resolve it by limiting the number of MC dropout samples and relying on noisy estimates.

A related approach to AL is semi-supervised learning (also sometimes referred to as weakly-
supervised), in which the labelled data is commonly assumed to be fixed and the unlabelled data is
used for unsupervised learning [22, 26]. Wang et al. [34], Sener and Savarese [28], Samarth Sinha
[27] explore combining it with AL.

6 Scope and limitations

Unbalanced datasets BALD and BatchBALD do not work well when the test set is unbalanced as
they aim to learn well about all classes and do not follow the density of the dataset. However, if the
test set is balanced, but the training set is not, we expect BatchBALD to perform well.

Unlabelled data BatchBALD does not take into account any information from the unlabelled
dataset. However, BatchBALD uses the underlying Bayesian model for estimating uncertainty for
unlabelled data points, and semi-supervised learning could improve these estimates by providing
more information about the underlying structure of the feature space. We leave a semi-supervised
extension of BatchBALD to future work.

Noisy estimator A significant amount of noise is introduced by MC-dropout’s variational approxi-
mation to training BNNs. Sampling of the joint entropies introduces additional noise. The quality of
larger acquisition batches would be improved by reducing this noise.

7 Conclusion

We have introduced a new batch acquisition function, BatchBALD, for Deep Bayesian Active
Learning, and a greedy algorithm that selects good candidate batches compared to the intractable
optimal solution. Acquisitions show increased diversity of data points and improved performance
over BALD and other methods.

While our method comes with additional computational cost during acquisition, BatchBALD is able
to significantly reduce the number of data points that need to be labelled and the number of times
the model has to be retrained, potentially saving considerable costs and filling an important gap in
practical Deep Bayesian Active Learning.
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A Proof of submodularity

Nemhauser et al. [24] show that if a function is submodular, then a greedy algorithm like algorithm 1
is 1 − 1/e-approximate. Here, we show that aBatchBALD is submodular.

We will show that aBatchBALD satisfies the following equivalent definition of submodularity:

Definition A.1. A function f defined on subsets of Ω is called submodular if for every set A ⊂ Ω and
two non-identical points y1, y2 ∈ Ω \ A:

f (A ∪ {y1}) + f (A ∪ {y2}) ≥ f (A ∪ {y1, y2}) + f (A) (14)

Submodularity expresses that there are "diminishing returns" for adding additional points to f .

Lemma A.2. aBatchBALD(A, p(ωωω)) := I(A ; ωωω) is submodular for A ⊂ Dpool.

Proof. Let y1, y2 ∈ Dpool, y1 , y2. We start by substituting the definition of aBatchBALD into (14) and
subtracting I(A ; ωωω) twice on both sides, using that I(A ∪ B ; ωωω) − I(B ; ωωω) = I(A ; ωωω | B):

I(A ∪ {y} ; ωωω) + I(A ∪ {x} ; ωωω) ≥ I(A ∪ {x, y} ; ωωω) + I(A ; ωωω) (15)
⇔ I(y ; ωωω | A) + I(x ; ωωω | A) ≥ I(x, y ; ωωω | A). (16)

We rewrite the left-hand side using the definition of the mutual information I(A ; B) = H(A)−H(A |B)
and reorder:

I(y ; ωωω | A) + I(x ; ωωω | A) (17)
=H(y1 | A) +H(y1 | A)︸                     ︷︷                     ︸

≥H(y1,y2 |A)

− (H(y1 | A,ωωω) +H(y2 | A,ωωω))︸                               ︷︷                               ︸
=H(y1,y2 |A,ωωω)

(18)

≥H(y1, y2 | A) −H(y1, y2 | A,ωωω) (19)
= I(x, y ; ωωω | A), (20)

where we have used that entropies are subadditive in general and additive given y1 y y2 | ωωω. �

Following Nemhauser et al. [24], we can conclude that algorithm 1 is 1 − 1/e-approximate.

B Connection between BatchBALD and BALD

In the following section, we show that BALD approximates BatchBALD and that BatchBALD
approximates BALD with acquisition size 1. The BALD score is an upper bound of the BatchBALD
score for any candidate batch. At the same time, BatchBALD can be seen as performing BALD with
acquisition size 1 during each step of its greedy algorithm in an idealised setting.

B.1 BALD as an approximation of BatchBALD

Using the subadditivity of information entropy and the independence of the yi given ωωω, we show
that BALD is an approximation of BatchBALD and is always an upper bound on the respective
BatchBALD score:

aBatchBALD
(
{x1, ..., xb} , p(ωωω | Dtrain)

)
(21)

=H(y1, ..., yb | x1, ..., xb,Dtrain) −Ep(ωωω|Dtrain)
[
H(y1, ..., yb | x1, ..., xb,ωωω,Dtrain)

]
(22)

≤

b∑
i=1

H(yi | xi,Dtrain) −
b∑

i=1

Ep(ωωω|Dtrain)
[
H(yi | xi,ωωω,Dtrain)

]
(23)

=

b∑
i=1

I(yi ; ωωω | xi,Dtrain) = aBALD
(
{x1, ..., xb} , p(ωωω | Dtrain)

)
(24)
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B.2 BatchBALD as an approximation of BALD with acquisition size 1

To see why BALD with acquisition size 1 can be seen as an upper bound for BatchBALD performance
in an idealised setting, we reformulate line 3 in algorithm 1 on page 4.

Instead of the original term aBatchBALD
(
An−1 ∪ {x} , p(ωωω | Dtrain)

)
, we can equivalently maximise

aBatchBALD
(
An−1 ∪ {x} , p(ωωω | Dtrain)

)
− aBatchBALD

(
An−1, p(ωωω | Dtrain)

)
(25)

as the right term is constant for all x ∈ Dpool \An−1 within the inner loop, which, in turn, is equivalent
to

= I(y1, ..., yn−1, y ; ωωω | x1, ..., xn−1, x,Dtrain) − I(y1, ..., yn−1 ; ωωω | x1:n−1Dtrain) (26)
= I(y ; ωωω | x, y1, ..., yn−1, x1:n−1,Dtrain) (27)

once we expand An−1 = {x1, ..., xn−1}. This means that, at each step of the inner loop, our greedy
algorithm is maximising the mutual information of the individual available data points with the model
parameters conditioned on all the additional data points that have already been picked for acquisition
and the existing training set. Finally, assuming training our model captures all available information,

≥ I(y ; ωωω | x,Dtrain ∪ {(x1, ỹ1), ...., (xn−1, ỹn−1)}) (28)
=aBALD

(
{x} , p(ωωω | Dtrain ∪ {(x1, ỹ1), ...., (xn−1, ỹn−1)})

)
, (29)

where ỹ1, ..., ỹn−1 are the actual labels of x1, ..., xn. The mutual information decreases asωωω becomes
more concentrated as we expand its training set, and thus the overlap of y andωωω will become smaller
(in an information-measure-theoretical sense).

This shows that every step n of the inner loop in our algorithm is at most as good as retraining
our model on the new training setDtrain ∪ {(x1, ỹ1), ...., (xn−1, ỹn−1)} and picking xn using aBALD with
acquisition size 1.

Relevance for the active training loop. We see that the active training loop as a whole is computing a
greedy 1−1/e-approximation of the mutual information of all acquired data points over all acquisitions
with the model parameters.

C Sampling of configurations

We are using the same notation as in section 3.3. We factor p(y1:n |ωωω) to avoid recomputations and
rewrite H(y1:n) as:

H(y1:n) = Ep(ωωω) Ep(y1:n |ωωω)
[
− log p(y1:n)

]
(30)

= Ep(ωωω) Ep(y1:n−1 |ωωω) p(yn |ωωω)
[
− log p(y1:n)

]
(31)

= Ep(ωωω) Ep(y1:n−1 |ωωω) Ep(yn |ωωω)
[
− log p(y1:n)

]
(32)

To be flexible in the way we sample y1:n−1, we perform importance sampling of p(y1:n−1 |ωωω) using
p(y1:n−1), and, assuming we also have m samples ŷ1:n−1 from p(y1:n−1), we can approximate:

H(y1:n) = Ep(ωωω) Ep(y1:n−1)

[
p(y1:n−1 |ωωω)

p(y1:n−1)
Ep(yn |ωωω)

[
− log p(y1:n)

]]
(33)

= Ep(y1:n−1) Ep(ωωω) Ep(yn |ωωω)

[
−

p(y1:n−1 |ωωω)
p(y1:n−1)

logEp(ωωω)
[
p(y1:n−1 |ωωω) p(y1:n |ωωω)

]]
(34)

≈ −
1
m

m∑
ŷ1:n−1

∑
ŷn

1
k
∑
ω̂ωω j

p(ŷ1:n−1 | ω̂ωω j) p(ŷn | ω̂ωω j)

p(ŷ1:n−1)
log

1
k

∑
ω̂ωω j

p(ŷ1:n−1 | ω̂ωω j) p(ŷn | ω̂ωω j)

 (35)

= −
1
m

m∑
ŷ1:n−1

∑
ŷn

(
P̂1:n−1P̂T

n

)
ŷ1:n−1,ŷn(

P̂1:n−11k,1

)
ŷ1:n−1

log
(

1
k

(
P̂1:n−1P̂T

n

)
ŷ1:n−1,ŷn

)
, (36)

where we store p(ŷ1:n−1 | ω̂ωω j) in a matrix P̂1:n−1 of shape m × k and p(ŷn | ω̂ωω j) in a matrix P̂n of shape
c × k and 1k,1 is a k × 1 matrix of 1s. Equation (36) allows us to cache P̂1:n−1 inside the inner loop of
algorithm 1 and use batch matrix multiplication for efficient computation.
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D Ablation study on Repeated MNIST

To better understand the effect of redundant data points on BALD and BatchBALD, we run the
RMNIST experiment with an increasing number of repetitions. The results can be seen in figure 10.
We use the same setup as in section 4.1. BatchBALD performs the same on all repetition numbers
(100 data points till 90%). BALD achieves 90% accuracy at 120 data points (0 repetitions), 160 data
points (1 repetition), 280 data points (2 repetitions), 300 data points (4 repetitions). This shows that
BALD and BatchBALD behave as expected.

Figure 10: Performance of BALD on Repeated MNIST for increasing amount of repetitions. We see
that BALD performs worse as the number of repetitions is increased, while BatchBALD outperforms
BALD with zero repetitions.

E Additional results for Repeated MNIST

We show that BatchBALD also outperforms Var Ratios [10] and Mean STD [20].

Figure 11: Performance on Repeated MNIST. BALD, BatchBALD, Var Ratios, Mean STD and
random acquisition with acquisition size 10 and 10 MC dropout samples.
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F Example visualisation of EMNIST

Figure 12: Examples of all 47 classes of EMNIST

G Entropy and class acquisitions including random acquisition

Figure 13: Performance on EMNIST. Batch-
BALD consistently outperforms both random ac-
quisition and BALD while BALD is unable to
beat random acquisition.

Figure 14: Entropy of acquired class labels
over acquisition steps on EMNIST. BatchBALD
steadily acquires a more diverse set of data points
than BALD.

Figure 15: Histogram of acquired class labels on EMNIST. BatchBALD left and BALD right. Classes
are sorted by number of acquisitions. Several EMNIST classes are underrepresented in BALD and
random acquisition while BatchBALD acquires classes more uniformly. The histograms were created
from all acquired points at the end of an active learning loop
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