Adaptive Variational Memory Encoding for Recurrent Data Synthesis

Sam Griesemer
Joplin High School

Abstract

This work proposes a generative architecture that
incorporates a natural approach to data synthe-
sis. The Adaptive Variational Memory Encoding
(AVME) model learns to represent data in an iter-
ative manner during training, allowing for adap-
tive generation when sampling new data. One-
shot approaches to data synthesis lack recurrent
communication between dependencies during gen-
eration; this work attempts to lessen the likeli-
hood of incoherent samples by giving the model
time to iteratively update its output. Such a mech-
anism is largely inspired by the adaptive capabil-
ities of the human mind for continuous predictive
insight, resulting in a statistical model entwined
with natural techniques. The AVME model is ap-
plied to both classical and conditional image gen-
eration, and shown to be effective at both tasks,
achieving state of the art results on the MNIST
dataset.

1. Introduction

Machine learning is a field devoted to the development of
algorithms that allow machines to learn from data. Meth-
ods in the field largely draw from biology, the human mind
being the ultimate source of learning techniques. Endow-
ing machines with the ability to learn from data permits
use of computational "intelligence” to solve previously un-
approachable problems. Such a task begins with allowing
computers to model and understand data structure; yet, this
is fundamentally difficult to accomplish accurately, as high
dimensional data have complex interconnected dependen-
cies that are not easily modeled.

There are two types of models typically assigned to the task
of modeling data: discriminative and generative models.
Discriminative models excel in classification tasks by find-
ing boundaries to separate data classes. This type of model
essentially represents the probability distribution p(y|z),
where x are input data points and y are class labels. This
effectively assigns a probability distribution over predicted
class labels given a certain input data point. One of the

SAMGRIESEMER @ GMAIL.COM

00—~ °
L SN

Figure 1. A simple diagram of neural network structure repre-
sented visually. In this particular example, the network has three
layers, each containing vertically grouped nodes. The leftmost
layer contains two input nodes, middle layer contains seven hid-
den nodes, and rightmost layer contains one output node. In
this diagram, the red lines connecting neurons represents posi-
tive weights, while blues lines represent negative weights. (Figure
created by Sam Griesemer).

most common and effective discriminative models is the
artificial neural network, a statistical architecture that uti-
lizes fundamental neural mechanisms of the brain to ap-
proximate functional relations between variables.

A basic unit known as the perceptron mathematically mod-
els the functionality of a biological neuron. By definition,
an artificial neural network is simply a network of percep-
trons, similar to how to the human mind is a network of
neurons. Through use of multiple layers of perceptrons,
neural networks implement sequential abstraction, build-
ing increasingly complex behavior and representation from
simple understandings.

Generative models take an inverse approach to the task of
modeling data; they model p(z|y). Rather than classify-
ing or making predictions from input data, they do just the
opposite: produce a probability distribution over potential
inputs given a certain output value. This approach approx-
imates the distribution from which the data are assumed
to originate, providing a generalized interpretation of the

Adaptive Variational Memory Encoding for Recurrent Data Synthesis

data’s structure. It also provides a means for sampling new
data points, a process termed data synthesis.

To understand why generative models are important, one
must understand the difference between supervised and un-
supervised learning tasks. For sake of simplicity, assume
the statistical model used in the following examples is an
artificial neural network (see Figure 1). Generally speak-
ing, a supervised learning task consists of training a par-
ticular model on labeled data. This entails having some
data x and their paired output values y. The paired out-
puts y can either be real values or discrete labels, depend-
ing on the task at hand. In the case of real valued outputs,
the model is being trained to perform regression, as it out-
puts real valued predictions from real valued inputs. As for
discrete output labels, the model is often being trained for
classification, outputting a predictive class label based on
the input. Neural networks perform well in both of these
situations and are applied across a variety of domains.

Unfortunately, the vast majority of available raw informa-
tion is unlabeled. Unless a large amount of time and effort
is spent curating a dataset, we are generally left with some
data x and no corresponding outputs y to train a model
on. To understand more about unlabeled data, a model can
learn to represent its inherent structure, and observations
can be made accordingly. This is where generative models
step in, as they can be trained to embed and represent input
data. Additionally, certain models can then sample from
this internally represented data distribution to obtain novel,
realistic data samples.

With the capability to accurately generate novel data, many
difficult real world problems can be attempted. One such
problem is text to audio synthesis, or generating realistic
sounding voices to automatically read books or articles. In
this case, a generative model is able to look at a body of text
and generate a corresponding audio file with voices reading
the text input. The model could then be trained to generate
a book on its own after gaining a structural understanding
of books.

This paper introduces the Adaptive Variational Memory En-
coding (AVME) model, capable of generating data recur-
rently, in hopes of incorporating a natural mechanism for its
generative procedure. One can imagine how a human might
draw (or ”generate”) an image an paper. First, the drawing
is envisioned and planned out before anything is drawn. In
reality, this plan can only be created to a certain extent. As
soon as pen touches paper, the envisioned plan must change
continually, at each moment reevaluating where and what
should be drawn next. This inherently adaptive capability
of the human mind allows for coherency in everyday life.
Being able to continuously predict the next instance at ev-
ery moment in time is part of what allows us to perform
well in new situations and make informed decisions about

the future. The AVME model attempts to capture this adap-
tive capability for data generation. The model adaptively
updates its internal control structure by evaluating its pre-
vious output at each moment to cater towards future output.
Mathematically imitating these natural mechanisms of the
human brain are hypothesized to create an effective data
synthesis model.

2. Related Work

In recent years, generative model efficiency and architec-
ture have seen a surplus of attention in machine learning re-
search. Emerging state of the art frameworks such as vari-
ational autoencoders (VAE) (Kingma & Welling, 2013),
Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014), and the Deep Recurrent Attentive Writer (DRAW)
(Gregor et al., 2015) embody the variance in generative
model architecture. Each model holds a particular bene-
fit in performance; this paper incorporates ideas from the
VAE and DRAW models. These generative techniques are
implemented in a recurrent manner, a process effectively
encapsulated by the recurrent neural network.

2.1. Variational Autoencoder
2.1.1. VARIATIONAL INFERENCE

Bayesian inference is a common method for drawing con-
clusions about data. By the nature of Bayesian statistics,
this type of statistical inference incorporates both the ob-
served data and prior beliefs about its structure.

In a general inferential setting, there are some data x for
which conclusions are to be drawn. This can be done by
defining a distribution over the data, which makes assump-
tions about the nature of how the data was sampled. These
parametric distributions are commonly referred to as prob-
ability density functions, and a number of them exist for a
variety of settings.

A common probability density function is the standard Gaus-
sian NV (z; 11, X). For the sake of example, one might wish
to parameterize a Gaussian with respect to some observed
data z. To do so, inference must be performed over the
density function’s parameters, p and X, so as to maximize
the likelihood of the data under the resulting parameterized
density.

To generalize the above example, a given density is often
referred to as p(x; #), where x are data and 6 is a vector of
parameters that define the distribution. A joint probability
distribution can be defined over x and 6:

p(z,0) = p(x|0)p(f) (1)

The term p(z|0) captures the probability density with re-

Adaptive Variational Memory Encoding for Recurrent Data Synthesis

spect to the parameters €, known as the likelihood func-
tion. The prior distribution p(#) incorporates information
known prior to observation of the data, a defining aspect of
Bayesian statistics.

This joint distribution sets the stage for the task of inference
over the density function’s parameters. Ultimately, the goal
is to compute a posterior distribution p(6|z) over parameter
vector 6. This means 6 is being treated as a continuous
random variable conditioned on x, and can thus give a good
indication to probable parameters under the data.

According to Bayes’ rule, the posterior distribution p(f|x)
can be calculated using the information as defined under
the joint density:

~ p(=|0)p(0)
plfle) = J, p(x10)p(6) @)

The marginalization integral in the denominator is often in-
tractable, however, disallowing exact computation of the
posterior. The goal of variational inference is to find a
close approximation of this intractable posterior and thus
allow Bayesian inference to take place. In order to make
this approximation as simple and efficient as possible, it
is assumed a well-defined density function ¢y (6|z) can be
parameterized so that it sufficiently resembles the true pos-
terior p(6]x). The subscript A represents the vector of pa-
rameters defining the probability density ¢(6|z), and could
similarly be denoted ¢(6|z, A). For example, if ¢ were
Gaussian (as it often is), A would be the vector of model
parameters [, Y.

In order to parameterize ¢ so that it best approximates the
true posterior p(6|x), a measure of the difference between
the two probability distributions must be calculated, and
subsequently minimized. This difference can be calculated
through the Kullback-Leibler divergence between the two
distributions:

Drrlga(2)||p(2]z)] 3)

Therefore, the optimal parameters for making ¢ similar to
p(0|z) are computed by minimizing the KL divergence be-
tween the two distributions:

gx = argminy D1l (2)||p(z|x)])

This term can be expanded to a tractable function, known as
the Evidence Lower Bound (ELBO). The resulting function
can be computed for each data point x; in some dataset D:

ELBOi(X) = Eq,(»)llogp(xi|2)] = DxLlax(2)|lp(2)]
(&)
The terms in the above equation can be computed in a va-

riety of ways, one of which is outlined by the variational
autoencoder model.

Figure 2. The general structure of the variational autoencoder
model. The leftmost encoder network encodes the input data into
a lower dimension by outputting parameters to define the latent
distribution. This latent distribution is represented by the coun-
tour plot in the middle of the figure, which is subsequently sam-
pled from, as represented by the red dot. This sample is then fed
through rightmost decoder network, bringing the latent sample
back into the higher dimensional data space. (Figure created by
Sam Griesemer).

2.1.2. VARIATIONAL AUTOENCODER APPROACH

The VAE model is a particularly effective approach to mod-
eling a data distribution. It solves the above optimization
problem of variational inference by utilizing deep learning
techniques, allowing for efficient and accurate approxima-
tions of the data distribution in question.

Intuitively, VAE’s attempt to model a data distribution by
learning to effectively represent the data = with the model’s
internal parameters. This is done by training the VAE to re-
construct the data given to it as input, forcing the model to
embed its structure. Reconstruction takes place over the
course of three steps: encoding, sampling, and decoding.
First, the high-dimensional input data is encoded into low-
dimensional space, so as to extract the most defining fea-
tures of the data. Then a sample is drawn from this low-
dimensional distribution, as parameterized by the encod-
ing process. This sample is then decoded back into the
higher dimensional data space, and the resulting output is
the model’s reconstruction of the data given to it.

Specifically, the encoding and decoding processes are im-
plemented using neural networks. The input data are passed
into an encoder network, mapping each data point z to out-
put values that parameterize a lower dimensional distribu-
tion. This low-dimensioal distribution is Gaussian, and rep-
resents ¢ (6]xz). The encoder’s job is to output an appro-
priate parameter vector A to define ¢, the posterior approx-
imation. A sample is then drawn from this distribution and
subsequently passed into the decoder network. This neu-
ral network maps the low-dimensional sample back to the
same dimension as the input data.

The output of the VAE is then compared to the original

Adaptive Variational Memory Encoding for Recurrent Data Synthesis

SENONNS
@
SO ®

Figure 3. Left: A standard recurrent neural network with inputs x
and outputs h. The recurrent node (red) is the hidden node of the
network, connecting inputs to outputs and recurring through time.
Right: An unrolled recurrent neural network. Although visually
different, it is the same as the diagram on the left, simply with
unrolled layers to show function through time. (Figure created by
Sam Griesemer).

input, and a reconstruction loss is computed. This loss de-
scribes how well the original image was recreated after be-
ing passed through the internal parameters of the VAE.

2.2. Deep Recurrent Attentive Writer

The Deep Recurrent Attentive Writer (DRAW) is an effec-
tive approach to generating data recurrently. The model im-
plements recurrent neural networks with the mechanisms
of the variational autoencoder. The AVME model draws in-
spiration from this architecture, namely the cumulative out-
put sample mechanism and certain recurrent weight con-
nections between iterations. These specific mechanisms are
described further in following sections.

3. Model

Neural networks, as mentioned earlier, are universal func-
tion approximators capable of mapping inputs to outputs
through sequences of nonlinear mappings. In a typical feed-
forward setting, these models are capable of mapping sin-
gle inputs to single outputs. However, there are many set-
tings in which data are sequential, and thus intertwined
with the dimension of time. Take, for example, the task of
language translation. In order to translate an English sen-
tence to Spanish, one has to deal with a sequence of words
through time. Each word is a high-dimensional data point
on its own; the resulting sentence as a whole inherently
connects each data point through the dimension of time.
By their very nature, standard feedforward neural networks
are not suited for modeling sequential data. As a result, the
recurrent neural network was introduced (see Figure 3).

Unfortunately, standard recurrent neural networks suffer
greatly from the ”vanishing/exploding gradient” problem.
As error is backpropagated through the network, computed

O,

-
o
-

L 4

Figure 4. Standard LSTM structure. Gates are labeled in accor-
dance to equations 6,7,8,9. Variables c¢; and h; represent the
LSTM’s cell state and hidden state, respectively, at time ¢. (Figure
created by Sam Griesemer).

gradients are sequentially multiplied by values greater or
less than one. As aresult, the gradient either vanishes or in-
creases rapidly, rendering the network ineffective. In order
to resolve this issue, a variety of recurrent neural networks
variants have been introduced to better control the flow of
data through the network, thereby diminishing the gradi-
ent’s sporadic tendencies. One such variant is the Long-
Short Term Memory (LSTM) architecture (Hochreiter &
Schmidhuber, 1997), outlined in greater detail below.

3.1. Network Architecture

LSTM networks are a recurrent neural network variant ca-
pable of effectively utilizing both current data and data seen
many iterations earlier. A model of such capacity helps
to remove issues surrounding standard recurrent networks,
such as the previously mentioned vanishing/exploding gra-
dient. LSTM’s have proved to be incredibly successful at
understanding sequences, and are thus used as an integral
component in our model. In particular, this paper extends
the Long Short-Term Memory architecture (Hochreiter &
Schmidhuber, 1997) with the forget gate extension (Gers
etal., 1997).

The model builds from a standard LSTM network with for-
get matrix f;, input matrix i;, and new cell state candidates
ét:

fe = o(wg - [z¢, he—1]) ©)
it = o(w; - [z, hy—1]) 0
¢ = tanh(we - [z, hy—1]) ®)
et = (ct—1 - fr) + (ir - &) ®)

where o denotes the logistic sigmoid function and x; is the
current training example. The above terms are computed
and the cell state c; is updated during each iteration.

These LSTM nodes are used in conjunction with core ideas
from the variational autoencoder. As opposed to using feed-

Adaptive Variational Memory Encoding for Recurrent Data Synthesis

Figure 5. Generalized structure behind the AVME model. The
body of the network is quite similar to that of Figure 2, but one
should note the black lines denoting recurrent weights connecting
information from one iteration to the next. The leftmost instance
of the network represents the first of K iterations for generating
samples, while the rightmost instance represents the last of K it-
erations in the current generative series. (Figure created by Sam
Griesemer).

forward neural networks for a VAE’s encoder and decoder
network, LSTM recurrent networks are used instead. This

allows the model’s information control flow to persist through

time. Intuitively, an LSTM network controls the flow of in-
formation into the VAE’s encoder network, while another
LSTM network controls how much of the VAE’s decoder
network can contribute to the output.

With the MNIST handwritten digit dataset (LeCun et al.,
1998) in mind, we found an effective encoder network struc-
ture to contain 784 input nodes (number of pixels per MNIST
image), 400 hidden nodes, and 100 output nodes. The 100
output nodes correspond to the number of dimensions in the
latent space; the encoder network maps from the data space
into this lower dimensional latent space. The decoder net-
work structure is simply the opposite of the encoder; 100
input nodes, 400 hidden nodes, and 784 output nodes. The
decoder maps from the parameterized latent space back to
the data space.

A specified number of iterations K are decided upon before
the model is trained. The model subsequently has these K
iterations to learn a sequential reconstruction of the cur-
rent training data point, and the cumulative output matrix s
represents the model’s final reconstruction. Only after the
specified K iterations is the reconstruction of the model
compared to the original input, and internal parameters are
adjusted accordingly. This training and sampling processes
are outlined in further detail in their respective sections be-
low.

A generalized visual interpretation of model can be seen in
Figure 5. Mathematically, from any iteration ¢ — 1 to the
next iteration ¢, the AVME model is defined as follows:

hy = E(wy, se-1,hf_1, b) (10)
2~ Q(hf) (In

hi =D(z, hi ;) (12)

St = th + S¢—1 (13)

where £ represents the encoder network, D represents the
decoder network, h; represents corresponding denoted LSTM
network’s hidden state, s, represents the cumulative out-
put matrix, and z; represents the sample drawn from latent
distribution q. Figure 5 displays the recurring weights be-
tween iterations with black lines across network instances.

3.2. Loss

The loss of a model is a measure of how well it is per-
forming a given task. In the context of an input classifica-
tion task, the loss is defined as the difference between the
model’s predicted classification and the true class the input
data point belongs to. This metric describes how “far off”
the model’s prediction is from its ideal value; minimizing
this difference allows the model to learn a better represen-
tation of the data.

In the case of generative models, the loss is generally de-
fined to be the negative log-likelihood of generated recon-
struction samples Z under the data x:

L = —log p(z|Z) (14)
Minimizing this loss is mathematically similar to perform-
ing maximum likelihood estimation, a procedure for find-
ing probable parameters to define a distribution with re-
spect to some observed data. To see this equivalency, one
must understand the maximum likelihood setting. Similar
to Bayesian inference, there are some data x and learnable
parameters 6 that define a density p(x|@). The problem of
inference is similar:

0 = argmazg p(z|0) (15)
As can be seen above, the maximum likelihood determines
the most likely parameters to define the available data, and
thus is a form of statistical inference. Yet, it differs from
Bayesian inference in that no prior beliefs regarding the
data are incorporated into the resulting parameter estima-
tion. To solve for the parameters 6, the likelihood p(z|9)
is put into log-space, differentiated with respect to the pa-
rameters, and set equal to zero to solve for the function’s
maximum. Another important note is the fact that the point
2 that maximizes some function f(x) is also the point that
minimizes that function’s reflection (over the x-axis), — f (z):

argmax, f(x) = argmin, — f(zx) (16)

Adaptive Variational Memory Encoding for Recurrent Data Synthesis

Thus

argmazg log p(x|0) = argming — log p(x]0) (17)

The right-hand side of this equation is similar to the loss
function in equation 14. The objective is to modify the pa-

rameters 6 of a model to minimize the negative log-likelihood

with respect to the available data. In the case of the loss
—log p(x|Z), the model is trying to generate samples Z that
are likely under the data, and can be done by minimizing
the negative log-likelihood.

The loss of the AVME model is a measure of how well
it is able to reconstruct input data. Minimizing this loss
subsequently minimizes the negative log-likelihood of its
generative samples under the data, which are drawn after
the model has been trained.

To train the AVME model (as described in the next sec-
tion), the binarized MNIST dataset (Salakhutdinov & Mur-
ray, 2008) was used. This puts the model is a binary setting,
and binary cross entropy loss was used as the loss function
to minimize. Generalized formulae from this section de-
rived from (Goodfellow et al., 2016).

3.3. Training

Training the AVME model is the process of minimizing its
loss with respect to the training data. A common bench-
mark dataset in machine learning is the MNIST handwrit-
ten digit dataset. MNIST was used to train the AVME
model and test its performance on the task of generating
new data samples.

Typically, neural networks minimize a loss function using
an optimization procedure known as gradient descent. The
intuition behind this method is fairly straightforward; the
gradient of the loss function is descended, so as to reach
a minimum. The use of gradient descent incurs a differ-
entiable model, requiring the partial derivative of the loss
be computed with respect to each learnable parameter. In
the case of neural networks, the process of modifying un-
derlying weights is known as backpropagation (backward
propagating error through the model). In the general case
of the feedforward neural network (Figure 1), backprop-
agation first entails computing the error between the net-
works prediction and the true training output. The error
determined by this computation is then spread backwards
throughout the network, assigning each of the model’s pa-
rameters a degree of responsibility for contributing to the
output error. This process is repeated until the model shows
a sign of convergence, or when the iterative change in pa-
rameters tends to stagnate.

The dimensionality of a model’s loss function is determined
by the number of learnable parameters within the model.
As the number of parameters in the model increase, loss

Figure 6. Generative procedure of the AVME model. This figure
is similar to the original structure (Figure 5), except for greyed
out elements of the network not used during generative sampling.
Specifically, the encoder network has been greyed out, as data
generation only requires the latent distribtuion and the decoder
network. (Figure created by Sam Griesemer).

complexity increases. This is the primary reason behind
long training intervals before convergence of parameters.

Formally, some defined loss function £(x) evaluates the
error of a model with respect to each of its parameters. To
modify each parameter so as to minimize loss, the partial
derivative of the loss function with respect to each param-
eter is computed. This is known as the gradient, and pro-
vides information about how to change the parameters to
descend the loss function, explaining the term gradient de-
scent. Each parameter 6 of a model is updated as follows:

oL
0t+1 = 9,5 — O[aiet (18)

where « represents a learning rate to scale down the gra-
dient’s effect. Generally speaking, this is how the model
updates its parameters and is ultimately able to learn from
the data being used for training.

3.4. Sampling

To generate data from the model, iterative samples were
drawn from a standard Gaussian and passed through the
decoder network. This entails stripping off the encoder net-
work and focusing solely on how the decoder network has
learned to map the latent space to the data space. This pro-
cess is repeated for each of the K specified iterations, with
each output contributing to the cumulative sample matrix
s. The following is repeated K times:

2~ N(0,1) (19)
hy = D(Zt> htfl) (20)
st = hi + 541 2n

Adaptive Variational Memory Encoding for Recurrent Data Synthesis

50000

40000

30000

Loss per Batch

20000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000
Batch number

Figure 7. The convergence of the model on the MNIST training
dataset. The model was trained on data batches of size 100 and
the loss was recorded after each batch. The loss per batch is
represented by the y-axis, while the number of batches seen by
the model is represented by the x-axis. One can clearly note of
the graph’s tail, indicating convergence. (Figure created by Sam
Griesemer).

Figure 8. Example results of AVME on generating MNIST im-
ages. The model was trained to generate images in 12 itera-
tions, and the sequential generation has been unrolled horizon-
tally. (Figure created by Sam Griesemer).

This process is represented by Figure 6, displaying the ab-
sence of the encoder network in the process of data synthe-
sis.

4. Results

The primary measure of the AVME model was its perfor-
mance on the binarized MNIST dataset. This dataset was
used for comparison to other models in the field, as it is so
commonly used for benchmark tests across machine learn-
ing models.

Using procedures outlined in the training and sampling sec-
tions, the AVME model was trained and sampled from to
produce novel MNIST images. The model was trained on
batches, or chunks, of data, so as to speed up the learn-
ing procedure. The convergence of the model over time is
shown in Figure 7, where the loss per batch was recorded
for each batch seen by the model. As can be see by the tail

Figure 9. Example results of conditional image generation. The
model was provided with a class label upon sampling, resulting in
selective synthesis. The top left block includes outputs of digit
zero queries, top right digit two queries, bottom left digit one
queries, and bottom right digit eight queries. (Figure created by
Sam Griesemer).

of the graph, the parameters of the model converge to a sta-
ble state. Upon convergence, the model was then sampled

from, resulting in the generative samples shown in Figure
8.

4.1. Conditional Generation

The AVME model was additionally tested on its ability to
conditionally generate images; that is, take a class label as
input during training so that specific classes of images can
be generated on command. Results of following procedures
can be seen in Figure 9.

Training the model to conditionally generate images is rela-
tively similar to the general training procedure as described
in Section 3.3. The model is simply fed a class label y; as
an additional input:

hE = E(xy, 501, h |, AP | y) (22)
2~ q(hf) (23)

h = D(z, b1, yt) (24)

sy =hP +s,4 (25)

This allows both the encoder and decoder networks of the
model to incorporate the correlation between input images
and class labels in their respective recurrent hidden states.
Additionally, to generate a conditional sample, the general
sampling procedure as outlined in Section 3.4 is followed
with the addition of a class label as input to the decoder
network:

2 ~N(0,1) (26)

Adaptive Variational Memory Encoding for Recurrent Data Synthesis

hy = D(Zt7 he—1, yt) 27
s = hy + 541 (28)

The model is then allowed K iterations to cumulate a final
output image.

5. Discussion

The model was trained on a specified X = 12 sampling
iterations to recurrently produce on output. Figure 8 shows
the unrolled iterative generation process, and how the model
responds to its previous output to generate an increasingly
coherent sample at each iteration. At the left of the sam-
ples, the initial image is cloudy and unclear. Over time,
however, a more coherent foreground emerges and the clut-
tered background fades to black behind it. Another interest-
ing thing to note is the model’s tendency to change the class
of image in focus during generation. Upon observing the
third row from the top, one can see how the model began to
generate a digit resembling zero. Nearly halfway through
the sample, however, the model decides to commit to gen-
erating a digit resembling a five, and leaves a gap near the
tail of the five further into the sample. Additionally, the
sample on fourth row from the top of Figure 8 begins with
a cluttered image of what appears to be a six. The six is so
narrow that the model then decides early on to commit the
sample to the digit one instead.

The results of conditional generation method were slightly
worse than classic image synthesis, as can be seen in Fig-
ure 9. It appears as though the model had more difficulty
separating out primary focus from the background; the dig-
its are much more cloudy than in Figure 8. Initially the
output images may each look identical, but upon closer in-
spection, the images vary slightly. This is a result of the in-
herit stochasticity of sampling from the latent distribution,
ultimately resulting in slight differences between outputs.
Each output image encapsulates the model’s learned repre-
sentation between the training label and paired input image;
this representation can change according subtle differences
early on in the generative sequence.

5.1. Statistical Analysis

To evaluate the model’s performance of reconstructing data,
the negative log-likelihood was computed over the testing
dataset. This separate dataset includes 10,000 binarized
MNIST example pairs never seen by the model during train-
ing. By testing the AVME model’s performance on never
before seen data, an unbiased metric can be computed and
generalization effectiveness can be determined.

To compute the negative log-likelihood of the model’s re-
constructive output, each input image was passed through
the model and the cumulative output was compared to the

true data example. Because both the training and testing set
are binarized, the Bernoulli likelihood function was used
for computing the log-likelihood between the model’s out-
put and testing examples.

Formally, the final cumulative output matrix s was passed
through the sigmoid function o to ”squash” all values be-
tween zero and one. The resulting matrix includes Bernoulli
means, providing the necessary parameters for computing
the likelihood.

The Bernoulli likelihood function is as follows:
L(O]z) = H 0% (1 —0) (29)

where z € {0,1} and € is the mean. To make this function
computationally efficient, it is placed in log space:

log L(0]z) = lelogﬂ—&-(l—x)log(1—0) (30)

T

In the case of the AVME model, Bernoulli means are de-
fined by o(sk), which in turn were used as parameters in
the above likelihood function along with input data x. As a
result, the computed log-likelihood function was computed
for each x; in the test set:

log L(o Zl logo(sk)+(1—x;)log(l—o(sk))

€2y

o(sg)lz) =

This sum was computed over 10,000 test examples. The av-

erage log-likelihood per test example was then computed.

Table 1 includes previous results from other generative mod-
els as well as the AVME model on the binarized MNIST

dataset. AVME was able to outperform the state of the art

on this dataset, achieving significantly lower negative log-

likelihood values.

5.2. Further Work

The AVME model should be extended for use on color im-
ages. This requires using new assumptions about the data
being used for training, removing the simplistic nature of
MNIST’s binary setting. Additionally, it would be inter-
esting to experiment more with the model’s parameters,
such as the predetermined number of sample iterations K
or sizes of the encoder and decoder network. More exten-
sive research could potentially determine optimal values for
parameters of the model similar to those listed above, thus
maximizing the model’s effectiveness during training and
sampling.

Adaptive Variational Memory Encoding for Recurrent Data Synthesis

Model NLL (—logp)
DRAW 80.97
NADE 88.33
DLGM 86.60
DBM 84.13
AVME 80.50

Table 1. Negative log-likelihood results of a variety of models on
the binarized MNIST dataset. The right-hand column displays the
average negative log-likelihood per test set example (in nats) on
the binarized MNIST test set for the respective model shown in
the left-hand column. The model results shown here are DRAW
(Gregor et al., 2015), NADE (Uria et al., 2014), DLGM (Rezende
et al., 2014), and DBM (Salakhutdinov & Hinton, 2009)

6. Conclusion

This paper introduced the Adaptive Variational Memory
Encoding (AVME) model, designed to incorporate adaptive
mechanisms of the human brain into the process of synthe-
sizing data. It was shown that the model is capable of per-
forming well at both classical and conditional image gener-
ation, with slightly worse performance conditionally gener-
ating images. The AVME model is also competitive with
respect to its reconstructive capabilities, outperforming the
state of the art on the binarized MNIST dataset. The nat-
ural assumptions inspiring the model’s structure and func-
tionality proved to be an effective statistical mechanism for
recurrently generating novel data.

*Submitted to Journal of Experimental Secondary Science
(JESS) on May 8, 2017

References

Gers, Felix A., Schmidhuber, Jurgen, and Cummins, Fred,
1997. Learning to forget: Continual prediction with
Istm.

Goodfellow, lan, Bengio, Yoshua, and Courville, Aaron.
2016, Deep Learning.

Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi,
Xu, Bing, Warde-Farley, David, Ozair, Sherjil,
Courville, Aaron, and Bengio, Yoshua, 2014. Genera-
tive adversarial networks.

Gregor, Karol, Danihelka, Ivo, Graves, Alex, Rezende,
Danilo Jimenez, and Wierstra, Daan, 2015. Draw: A
recurrent neural network for image generation.

Hochreiter, Sepp and Schmidhuber, Jurgen, 1997. Long
short-term memory.

Kingma, Diederik P and Welling, Max, 2013.
encoding variational bayes.

Auto-

LeCun, Yann, Bottou, Leon, Bengio, Yoshua, and Haffner,
Patrick, 1998. Gradient-based learning applied to docu-
ment recognition.

Rezende, Danilo J, Mohamed, Shakir, and Wierstra, Daan,
2014. Stochastic backpropagation and approximate in-
ference in deep generative models.

Salakhutdinov, Ruslan and Hinton, Geoffrey E, 2009. Deep
boltzmann machines.

Salakhutdinov, Ruslan and Murray, Iain, 2008. On the
quantitative analysis of deep belief networks.

Uria, Benigno, Murray, lain, and Larochelle, Hugo, 2014.
A deep and tractable density estimator.

	Introduction
	Related Work
	Variational Autoencoder
	Variational Inference
	Variational Autoencoder Approach

	Deep Recurrent Attentive Writer

	Model
	Network Architecture
	Loss
	Training
	Sampling

	Results
	Conditional Generation

	Discussion
	Statistical Analysis
	Further Work

	Conclusion

