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Congestion games are a class of games where agents must select from a set
of resources whose costs are determined by their demand. Tra�c networks
are a common example from this class of games, where resources are roads
whose cost is dependent on the number of agents driving along that road.
In this project, we explore the actions of agents over time in a simple road
network environment. We implement three di�erent learning algorithms
that allow the agents to make inferences about their environment and act
rationally according to their beliefs learned across repetitions of the tra�c
game. We analyze the dynamics of each of these learning strategies and
their impact on the behavior of the agents. We additionally report on the
agents’ convergence to equilibrium, and how Braess’ paradox impacts agent
behavior in the tra�c network.

1 INTRODUCTION
Congestion games are games with resources that take on a value
inversely proportional to the number of agents that use them. This
class of games naturally lends itself to problems involving network
�ow, where the value of following a particular path through a net-
work decreases as �ow increases along that path. One important
example of this type of game is tra�c networks, which model tra�c
�ow through a network of roads. If agents in such a system can be
realistically modeled, then we can better understand the dynamics
of real tra�c networks and predict the �ow of tra�c.
There are a number of interesting phenomena that arise when

considering the structure of road networks. One such phenomenon
is Braess’ paradox, which is commonly de�ned as the observation
of a negative impact to overall tra�c �ow when roads are added
to a road network. This paradox arises from the typically well-
intentioned act of adding roads (e.g. highways) to increase the �ow
of tra�c throughout a road network. Intuitively we might expect
this outcome; more roads provide more travel options for drivers
and seemingly better distribute tra�c, thus reducing total travel
time for everyone. However, there are certain instances where the
opposite occurs, and adding a road instead increases overall tra�c
time for all drivers. This is often a result of the new road presenting
a better alternative over existing routes, incentivizing all drivers to
take the new road. The newly added route then becomes expensive
for all drivers, none of which now have incentive to switch back to
pre-existing routes. We see a canonical example of Braess’ paradox
in the setup for our problem, described in Section 1.1.
In this project, we explore the behavior of agents in repeated

congestion games by simulating a number of agent learning algo-
rithms on the simple tra�c network described in Section 1.1. We test
three di�erent learning strategies: �ctitious play, ϵ-greedy explo-
ration, and Thompson sampling. These algorithms de�ne a learning
strategy and action mechanism that allows each agent to maintain
beliefs about the environment as repeated iterations of the tra�c
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congestion game are played out. These strategies are each explained
in further detail in Section 2.

1.1 Setup
When developing a framework for simulating agents on a road
network, we used the general road structure and costs as depicted
in Figure 1.

Fig. 1. Network diagram without the superhighway

Here the values along each of the blue paths represent the costs
incurred by the agents traversing those roads. The valueC is de�ned
as some �xed cost not dependent on the number of agents traversing
the road. For the roads with a cost given by x

f (n) , agents traveling
on these roads each incur a cost proportional to x , the total number
of agents traveling along that road. The constant of proportionality
is de�ned by some function f (n), where n is the total number of
agents in the simulation. We present the costs in this way to ensure
roads with dynamic costs are properly weighted across simulations
with varying numbers of agents.

In Figure 2, we introduce an additional road referred to as the
“superhighway”. This road connects nodes 2 and 3 at a �xed cost
of zero for all agents that travel on it. This is the canonical Braess’

Fig. 2. Network diagram including superhighway as indicated by the dashed
red line
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paradox network structure mentioned previously, which as we will
later observe shifts the network equilibrium (for the worse). Note
that in order for Braess’ paradox to have an e�ect after adding a su-
perhighway, these costs must be tuned to the number of agents. We
use f (n) = n/20, evaluation to 100 for 2,000 agents (used commonly
across experiments in Section 3).

2 METHODS
When simulating agents in the tra�c environment, we experimented
with �ctitious play, ϵ-greedy exploration, and Thompson sampling
for our agent learning strategies. In this section we brie�y describe
each of these methods and provide relevant implementation details.

2.1 Fictitious Play
Fictitious play is a learning strategy where agents assume their
opponents choose actions according to a stationary mixed strategy
at each iteration of the game [1]. An agent computes an opponent’s
assumed mixed strategy using their empirical distribution of actions
marginalized over time. That is, the marginal empirical distribution
of agent i at time t is given by

pti (ai ) =
1
t

t−1∑
τ=0

naτi = aio,

where ai ∈ Ai is some action in agent i’s action space Ai . This
is the mixed strategy each agent other than i will assume agent
i is playing at time t . Each agent i then computes the product of
their opponents’ empirical distributions pt

−i (which is de�ned over∏
j,i Aj ). The distribution pt

−i serves as a proxy for the true joint
distribution over agent i’s opponents’ strategy pro�les. Each agent
i then selects the action that best responds to pt

−i , i.e. the action
for which they have the minimum expected cost under the joint
distribution of their opponents assumed strategies.
We note that �ctitious play is classically de�ned for 2-player

games, and converges on 2-player potential games as shown by [2].
For this reason, along with the computational di�culty of scaling
the policy to a large number of agents, we restrict our �ctitious
play experiments (Section 3.1 to a relatively low number of agents
(n = 2, . . . , 6).

2.2 ϵ-greedy
ϵ-greedy is a multi-armed bandit strategy that repeats the best
action seen thus far (1− ϵ)% of the time and deviates to a randomly-
selected action ϵ% of the time [4]. In our experiments (Section 3.2),
we decided to use an epsilon value of 0.01 for 2,000 agents. Thus the
expected number of agents deviating to a randomly selected action
is 20 for each iteration. The entire history for each agent was stored
for reference when selecting the best action. In the �rst iteration of
the game, agents pick their actions uniformly at random from the
action space.

2.3 Thompson Sampling
Thompson sampling takes a Bayesian approach to learning agent
behavior, using a prior, likelihood, and posterior which are updated
using Bayes’ rule from past experiences. Every time the agent is re-
quired to take an action, it samples a value θ∗ from the posterior and

uses that to choose the action maximizing the expected likelihood
given those parameters [3].
Our reward signal was constructed from the agent’s individual

cost of traversing their last road. This cost is distributed according
to a multinomial distribution. Each agent has a choice between 2
or 3 roads (depending on the presence of a superhighway), which
determines the number of categories of our distribution. Our prior
and posterior were chosen to be Dirichlet-distributed due to its
conjugacy with respect to a multinomial likelihood and extensive
�exibility. The parameters of the Dirichlet prior were set initially so
as to create a uniform prior over every action/route. The posterior
was updated at each iteration using Bayes’ rule by adding the reward
signals to the appropriate action position in the α vector.

3 EXPERIMENTS AND RESULTS
Here we report and describe results for a number of di�erent ques-
tions for each of the learning strategies. Questions we set out to
answer by our observations include (1) how outcomes vary on the
tra�c network with and without the superhighway, (2) how the
number of agents a�ects the simulation outcome (along with fac-
tors like rate of convergence), and (3) how di�erent initial settings
and/or prior beliefs a�ect outcomes. Finally, we compare the results
across all of the learning strategies and draw conclusions about
performance on this tra�c environment.

3.1 Fictitious Play
For the reasons given in Section 2.1, we only ran experiments with
2, 4, and 6 agents. For each of these cases, we noticed consistent
convergence to the expected equilibrium for both tra�c networks
with and without the superhighway.

That is, without the superhighway, all experiments eventually
reached the equilibrium outcome where each route is taken by
half of the agents. We note that, if started in equilibrium, no agent
would ever switch their action to taking a di�erent path at any
future iteration. When experiments were started with an uneven
number of agents taking either route, we observed that agents would
initially synchronize their actions, selecting the same route at each
repetition. This is because of the two available routes appeared to
be the best choice for each agent, and thus was taken by all agents.
Over time, however, the simple stochasticity enforced by �ctitious
play on indi�erence steps in and randomly varies agents’ actions.
This ultimately results in acheived equilibrium.

With the superhighway enabled, all experiments had an identical
process. Regardless of the agents’ starting routes, after one iteration
of the game all agents would be taking the superhighway. This is
due to the stationary assumptions each agent is making about their
opponents, and the easily identi�able bene�t each agent has by
greedily switching to the superhighway under these assumptions.

All in all, our observations matched our expectation convergence
to equilibrium in accordance with the proof of �ctitious play’s con-
vergence for two-player potential games in [2].

3.2 ϵ-greedy
Having n = 2000 agents make decisions using a ϵ-greedy policy, we
observe the total cost and road choice for all agents as shown in
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Fig. 3. 2000 Agents using ϵ -greedy without superhighway
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Fig. 4. 2000 Agents using ϵ -greedy without superhighway
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Fig. 5. 2000 Agents using ϵ -greedy with superhighway

Figure 3 (before adding the superhighway). The corresponding plot
showing the number of agents taking each action at each iteration
can be seen in 4. After adding the superhighway, the results change
to those shown in Figure 5. Again, the corresponding visualization
of the number of agents taking each of the possible actions is shown
in Figure 6. Both of these experiments appear to converge after
many iterations, although there is a noticeable pattern of large
divergences in the case where a superhighway is not available. We
can see Braess’ paradox in action: after adding the superhighway,
the total cost experienced by every agent increased at convergence.
These results, especially in comparison with those from other

methods, beg the question: what improvement can changing ϵ have

0 200 400 600 800 1,000
0

500

1,000

1,500

2,000

Iteration

N
o.
A
ge
nt
s

Agent Road Choices

High Road
Low Road
Superhighway

Fig. 6. 2000 Agents using ϵ -greedy with superhighway
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Fig. 7. Evaluating convergence time for values of ϵ

on convergence? We then varied epsilon for 100 unique values
between 0 and 1 with the superhighway and plotted the average
total score (a proxy for area under total cost curve) in Figure 7.
These results varying prior parameters suggest that ϵ = 0.05 lead
to the quickest convergence when using the superhighway as this
maximizes the curve. New graphs using this value are available in
appendix A and demonstrate faster convergence than previously
shown with the ϵ-greedy strategy. We additionally repeated this
experiment using an environment with a lower number of agents
(n = 100) and noticed that the time to convergence decreased, as we
might expect.

3.3 Thompson Sampling
Having all agents make decisions using a Thompson sampling pol-
icy, the behavior before adding a superhighway can be seen in
Figure 8. This plot demonstrates the relatively quick convergence
to equilibrium, at a total cost of 70,000. Figure 9 shows the number
of actions that take each route at each iteration.
After adding the superhighway, the results change to those pre-

sented in Figure 10. We can see here a very rapid convergence: after
less than 200 iterations, the total cost stabilizes and individual agents
stick to their proven exploitative behavior, as shown in Figure 9.
Agents appear to distribute themselves between the two roads in
the trial without a superhighway, as is optimal. After adding a super-
highway, they quickly all rush to use the superhighway as shown in
Figure 11, since it optimizes their individual costs. We additionally
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Fig. 8. 2000 Agents using Thompson sampling without superhighway
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Fig. 9. 2000 Agents using Thompson sampling without superhighway
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Fig. 10. 2000 Agents using Thompson sampling with superhighway

repeated this experiment on larger and smaller bodies of agents, and
observed that the time to convergence remained approximately the
same. As a result, we conclude that the rate of convergence when
Thompson sampling is used in this environment does not appear to
depend heavily on the number of agents involved in the simulation.

4 CONCLUSION
Among all of the learning methods we experimented, Thompson
sampling appeared to move the quickest toward convergence of
the agent-optimal cost in the tra�c network environment. It also
exploited the optimal solution the most after �nding it, not be-
ing prone to the large cost spikes caused by poor exploration as
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Fig. 11. 2000 Agents using Thompson sampling with superhighway

seen in ϵ-greedy (Figure 3). It additionally did not require extensive
prior tuning to perform e�ectively, only working from an unin-
formative, uniform prior. Both Thompson sampling and ϵ-greedy
approaches are more applicable to games with large numbers of
agents when compared to �ctitious play with our implementation.
All tested strategies were shown to make individually rational deci-
sions at convergence, as shown by every agent eventually taking
the superhighway in that case. All strategies also settled towards a
half-and-half split between the roads in the case that there was no
superhighway available.

5 FUTURE WORK
The success of Thompson sampling in this environment suggests
that alternative Bayesian methods of creating a prior over actions
and updating it in response to observations may also be applicable
to this problem. Bayesian optimization allows use of a wide variety
of policy options such as expected improvement to select the point
(or action in this case) to explore next. However, each action selected
here would include an indeterminate amount of noise re�ecting the
actions of other individuals.
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A GRAPHS AFTER PRIOR OPTIMIZATION
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Fig. 12. 2000 Agents using ϵ -greedy with superhighway
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Fig. 13. 2000 Agents using ϵ -greedy with superhighway
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