Image Quilting for Texture Synthesis

Implementing Techniques from (Efros & Freeman, 2001)

Sam Griesemer
Washington University in St. Louis

Abstract

Texture synthesis is a process by which large
images are constructed from smaller texture
samples. In this project we implement mul-
tiple techniques used in (Efros & Freeman,
2001) as simple yet effective improvements
over basic tiling techniques. We outline these
methods in detail and took a closer look at
how and why they work. Finally, we ana-
lyze these methods and their performance
on textures of varying complexity, as well as
their sensitivity across a number of settings.

1. Introduction

Image synthesis encompasses a broad class of algo-
rithms that are capable of creating new images. Many
techniques address specific, constrained scenarios (e.g.
texture synthesis), while others address larger, more
general problems (e.g. synthesizing high-res natural
images). These approaches vary wildly, from sim-
ple random tiling to sophisticated generative models
like GANs. In this project we focus on texture syn-
thesis, the process of producing from a small texture
sample a larger, perceptually similar image. There
are many techniques for approaching such a prob-
lem, each with varying degrees of success in terms
of output quality and efficiency. For example, sim-
pler methods are often more efficient but suffer from
poor output quality due to strong assumptions about
the nature of textures. More complex methods of-
ten do a better job at producing high-quality outputs
(thanks to more flexible assumptions and model fit-
ting), but can be very inefficient and thus difficult to
use in practice. As a result, the primary challenge is
finding a texture synthesis algorithm that makes an
effective tradeoff between efficiency and output qual-

ity.
Texture synthesis is an important problem with a num-
ber of practical applications across computer vision.

SAMGRIESEMER@WUSTL.EDU

These include texture mapping, inpainting, image de-
noising, and more. Texture mapping may be consid-
ered the canonical application of texture synthesis,
whereby a texture sample is mapped to a much larger
area while retaining similar visual qualities. Such a
process could also be used to “cover up” or remove
objects from images using the surrounding texture
context. This example overlaps with the goal of im-
age inpainting, where damaged or missing parts of an
image are restored or “filled in” using nearby texture
context.

For this project we explore three texture synthesis meth-
ods discussed in (Efros & Freeman, 2001). These meth-
ods include simple random patch selection, a con-
strained overlapping patch search, and the so-called
“minimum error boundary cut” method introduced
by the authors. We seek to implement each of these
methods and replicate the paper’s texture synthesis
results. We then describe each of the methods in de-
tail, and explore their performance in a variety of sit-
uations. As a result, the primary goal of this project
is to provide an efficient, working implementation of
the paper’s proposed methods, expand on the details
of these algorithms in an intuitive way, and better un-
derstand the situations in which these methods per-
form successfully.

2. Related Work

Due to its implications and practical uses, texture syn-
thesis has received a fair amount of attention over the
past few decades. As a result, a wide variety of algo-
rithms and approaches have been published in this
time. There are far too many to address here, but
a few notable classes of approaches such as physical
simulations are worth mentioning. It is no surprise
that surface textures can be synthesized using phys-
ical simulations. Although somewhat limited in the
kinds of textures that can be represented, patterns
such as fur, skin, and scales can be modeled using
methods like cellular texturing (Worley, 1996). Addi-



Image Quilting for Texture Synthesis

tionally, the common weathering effects often seen on
real life materials can be reproduced using computer
simulation as seen in (J. Dorsey & Pedersen, 1999).

Additionally, we observe work related to the main
paper of interest. This includes efficiency improve-
ments introduced after the papers release such as (Wei
& Levoy, 2000) and (Liang et al., 2001), along with
the related prior work from the authors in (Efros &
Leung., 1999).

3. Quilting

The process of stitching together texture patches to
form an output image is referred to as “image quilt-
ing” in the original paper. The image quilting algo-
rithm introduced in (Efros & Freeman, 2001) is the
result of multiple successive improvements to a very
simple stochastic tiling method. Here we build up
from this simple technique and explore the results of
the increasingly sophisticated modifications as intro-
duced by the authors.

3.1. Naive Tiling Method

The first and most basic quilting algorithm discussed
in the paper establishes a performance baseline that
we should hope to exceed with successive improve-
ments. This naive method takes an input texture im-
age, along with a block size B, and stitches together
patches of size Bx B drawn randomly from the source
image. The diagram (Figure 1) below attempts to show
this process visually:

Figure 1. Diagram showing the random patch selection al-
gorithm during synthesis. The red square represents a ran-
domly selected patch of size BxB in the input texture on the
left and its placement onto the synthesized output image on
the right. The light blue region represents the portion of the
output image that has already been synthesized.

We note from this figure that the sampled patch is

placed directly into its own area in the output im-
age; there is no overlap with the previously selected
patches. This process continues in raster scan order
until the output image has filled the desired size.

We now provide an example of the algorithm using
one of the same textures seen in the paper (to allow
for direct comparison):

Input texture

Randomly selected patches

Figure 2. Random patch selection applied to the input tex-
ture (left) and the resulting image (right). The input texture
is size 64 x 64, and the synthesized image is a 6 x 6 stitching
of patches each sized 32 x 32.

Looking closely at the synthesized result, we can see
distinct edges between most of the patches. As a re-
sult, the output is not a very natural or satisfying ex-
tension of the input texture. This, of course, is ex-
pected; there are no constraints in place to select “suit-
able” patches as the image is constructed. We now
look to a slight modification of this method that yields
significantly better results by enforcing a simple over-
lap constraint.

3.2. Overlapping Patches

We can significantly increase the quality of the syn-
thesized image by searching the input texture for the
“most suitable” patches during construction. The no-
tion of a “suitable patch” refers to those patches which
meet certain criteria according to some measure along
a region of overlap between patches. What exactly is
used as this measure is left undefined in the paper,
however we believe the authors likely make use of
squared error here as it’s used elsewhere throughout
the paper.

This simple “overlapping patches” method works as
follows. Let S be the set of all possible patches of
size Bx B in the input texture, and let O be some fixed
amount of pixel overlap to be used for selecting new
patches. As we iterate over the output image in raster
scan order, we fill it using the patch from Sg that min-
imizes the squared error along the region of overlap



Image Quilting for Texture Synthesis

at the current patch location. That is, if the overlap
region in the output image is f,, then we set the cur-
rent output location to be the patch p such that

p = argmin(s, — t,)?,
seSp

where s, is the region of overlap in the patch s € Sp.
The original paper defines e = (s, — t,)* as the “error
surface” of the patch s and the output image at the
current location. Figure 3 below shows this process
visually.

Figure 3. Diagram showing the overlapping patch selection
during synthesis. The red square represents the patch p €
Sp with the lowest overlap error (as defined above). On the
right, we can see the location where the selected patch is to
be placed in the synthesized image. The blue region inside
of the red square here represents the overlap region t, of
the currently synthesized image. On the left, the light red
region inside of the patch is the overlap region p, for the
patch p. The squared difference between the pixels in these
two regions is defined to be the error surface, as seen above.

Now we run this algorithm on the same input texture
as before:

Input texture

Constrained overlap

Here we can easily see that the output quality has im-
proved; the edges between patches are much more
faint, and there are many places where the texture
across the seams appears to line up. This is due to the

fact we’'ve explicitly chosen patches that work well
within some overlapping region, and should expect
that patches share some structure with the edges of
neighboring patches. These results are very similar to
those seen in the original paper for this simple over-
lap method. However the results still leave room for
improvement; careful inspection makes it easy to spot
separate patches in the image. The fact that patches
must have straight edges prevents the successful align-
ment of features across seams. We will now look at
the final improvement introduced by the authors that
improves output quality even more.

3.3. Minimum Error Boundary Cut

Making yet another simple modification to the previ-
ous algorithm, we arrive at the paper’s primary tex-
ture synthesis contribution. This algorithm allows
patches to be “cut” before they are stitched together,

meaning patches are no longer required to have a straight

boundary. As a result, patches can better align with
each other and stitch features together in a more flex-
ible and natural way.

The authors refer to the optimal boundary cut on a
patch’s edge as the “minimum error boundary cut”.
This cut is defined along the error surface e (presented
in Section 3.2), and can be computed by finding the
cumulative minimum error E for all possible paths
through this surface:

Ejj=ej+min(E;_1;1,Ei_1jEi1j1)

E is a matrix of values built up by traversing the error
surface e and tracking the minimal error path at each
location. In our implementation, we used dynamic
programming to efficiently build up E as a memoiza-
tion table (as is recommended in the paper). Once
this computation is complete, the last row of E holds
the cumulative costs for the minimal error paths end-
ing at each location in the row. It is then trivial to
trace back through E and recover the overall minimal
error cut through the error surface.

Once again, we run this method on the same input
texture for comparison: Here we observe improved
output quality once again. The resulting texture ap-
pears to be quite consistent throughout the image,
and there are no longer any sharp, salient patch edges.
Because the algorithm is allowed to have curved patch
edges, features are now able to fit together in a way
that is more consistent with the structure present in
the input texture. This isn’t to say that the output is
entirely free of artifacts; looking closely at the out-
put image, we can spot regions where color or shape
doesn’t quite align properly. Nevertheless, for this



Image Quilting for Texture Synthesis

Input texture

particular texture input, the image quilting method
proposed by (Efros & Freeman, 2001) performs sig-
nificantly better than the naive random approach in-
troduced in Section 3.1.

4. Experiments

We now perform a number of experiments with the
image quilting method introduced in Section 3.3. This
includes further verification that our implementation
matches that of the original paper, synthesis results
on a number of different textures, and exploration
into potentially troublesome situations for the algo-
rithm.

4.1. Implementation Correctness

We first provide a few examples using the same tex-
tures as the original paper to verify our implementa-
tion’s correctness. Although not definitive, this com-
parison allows us to check for possible inconsisten-
cies across results. Note that our algorithm was run to
produce output images of the same size as those seen
in the original paper. We also use the same reported
settings: an overlap O 1/6 the size of the block size
B, and an error tolerance of 0.1 for selected matching
patches.

4.2. Texture Complexity

An interesting factor of texture synthesis is the level
of randomness present in the input texture. If the tex-
ture was perfectly deterministic and repetitive, then
a successful image quilting algorithm would require
no more than the equivalent of copy and paste where
texture repeats. However, for more stochastic tex-
tures, there can be inconsistent variations through-
out the image, making it difficult to scale in a natural
way. Here we explore the degree to which the pro-
posed method can handle varying degrees of stochas-
ticity and/or complexity in the input texture. The re-
sults seen in Figure 4 are what we might classify as
“medium” complexity; they undoubtedly have a de-

Figure 4. Result comparison between our implementation
and the original paper using the image quilting algorithm.
Left: input texture, Center: our implementation, Right:
original paper



Image Quilting for Texture Synthesis

gree of repetition, but across the board all share some
varying, non-trivial structure.

To test simple, deterministic textures we run the al-
gorithm on a repetitive checkerboard pattern. The
results, unsurprisingly, look as follows:

Figure 5. Simple checkered result

Here we see the algorithm succeeds in the expected
way. It is a able to identify the simple, checkered pat-
tern and repeat it consistently. This is the kind of be-
havior we would expect from even the most simple of
texture synthesis algorithms.

For a more difficult pattern, we searched for textures
that had a large degree of variability and inconsistent
structure. We hoped this would reveal some poten-
tial weak points of the algorithm when faced with in-
creasingly random textures. Our selected image and
algorithm’s performance look as follows:

Figure 6. Complex input texture

=

G5 Sy DS
—> 4 - _4,‘\ =) S Vi ) 2 4

2L Wi

5 — y -— - .
) iy S 2l
oS 4 -‘(,/j 2L ¢ §

I AN T ) (S
SIS e
> e i
5 5 §
S
= ‘/_J 3 r}(
‘%a S D
441 = (e =) 3 } ¥
5 X Yy
— “ (/j =) )
A = / = i/ 2 =z

Figure 7. Complex texture synthesized result

Here we find the algorithm is ultimately able to come
up with a reasonable quilting pattern for the seem-
ingly complicated input texture. This is somewhat
surprising, as there are a number of “medium-tier”
complexity textures that appear to have some minor
artifacts. We anticipated these inconsistenices would
be magnified in this scenario. One possibility here
is that the inherent curvy nature of the local struc-
ture in the image lends itself well to the algorithm’s
flexible boundaries, making it fairly easy to hide the
“stitches” across patches.

5. Conclusion

In this project we implemented and explored three
texture synthesis methods discussed in (Efros & Free-
man, 2001). Among these approaches include the “min-
imum error boundary cut” method introduced by the
authors, on which we focus most of our analyses. We
first described this method in detail, as a result of
multiple simple improvements to a naive random tiling
method. We then implemented this algorithm and
compared our results to those seen in the original pa-
per. We then performed a few additional experiments
to better understand how the algorithm performs on
textures of varying complexity. Here we found that
the algorithm did surprisingly well at what appeared
to be a sufficiently stochastic and difficult texture to
extend.

References

Efros, A. and Leung., T., 1999. Texture synthesis by
non-parametric sampling.



Image Quilting for Texture Synthesis

Efros, Alexei A. and Freeman, William T., 2001. Im-
age quilting for texture synthesis and transfer.

J. Dorsey, A. Edelman, J. Legakis H. W. Jensen and
Pedersen, H. K., 1999. Modeling and rendering of
weathered stone.

Liang, Lin, Liu, Ce, Xu, Ying-Qing, Guo, Baining, and
Shum, Heung-Yeung, 2001. Real-time texture syn-
thesis by patch-based sampling.

Wei, Li-Yi and Levoy, Marc, 2000. Fast texture syn-
thesis using tree-structured vector quantization.

Worley, S. P.,, 1996. A cellular texture basis function.



	Introduction
	Related Work
	Quilting
	Naïve Tiling Method
	Overlapping Patches
	Minimum Error Boundary Cut

	Experiments
	Implementation Correctness
	Texture Complexity

	Conclusion

